Facile preparation of hyaluronic acid-modified Fe3O4@Mn3O4 nanocomposites for targeted T1/T2 dual-mode MR imaging of cancer cells

作者: Jingchao Li , Yong Hu , Wenjie Sun , Yu Luo , Xiangyang Shi

DOI: 10.1039/C6RA05648B

关键词:

摘要: We report a facile approach to synthesizing hyaluronic acid (HA)-modified Fe3O4@Mn3O4 nanocomposites (NCs) for targeted T1/T2 dual-mode magnetic resonance (MR) imaging of cancer cells. In this work, branched polyethyleneimine (PEI)-coated NCs (Fe3O4@Mn3O4-PEI NCs) were first synthesized via one-pot hydrothermal route, followed by modification HA on the particle surface PEI amines. The formed Fe3O4@Mn3O4-PEI-HA well characterized different techniques. Our results manifest that possess good water dispersibility, colloidal stability, cytocompatibility in studied concentration range, and targeting specificity CD44 receptor-overexpressing Due coexistence Fe3O4 Mn3O4 particles, display relatively high r2 (143.26 mM−1 s−1) r1 (2.15 relaxivities, can be used as an efficient nanoprobe MR cells vitro. developed may hold great promise nanoplatform theranostics biological systems.

参考文章(55)
Xiaolian Sun, Xinglu Huang, Xuefeng Yan, Yu Wang, Jinxia Guo, Orit Jacobson, Dingbin Liu, Lawrence P. Szajek, Wenlei Zhu, Gang Niu, Dale O. Kiesewetter, Shouheng Sun, Xiaoyuan Chen, Chelator-free 64Cu-integrated gold nanomaterials for positron emission tomography imaging guided photothermal cancer therapy ACS Nano. ,vol. 8, pp. 8438- 8446 ,(2014) , 10.1021/NN502950T
Hongdong Cai, Xiao An, Shihui Wen, Jingchao Li, Guixiang Zhang, Xiangyang Shi, Mingwu Shen, Facile Synthesis of Gd(OH)3 -Doped Fe3 O4 Nanoparticles for Dual-Mode T1 - and T2 -Weighted Magnetic Resonance Imaging Applications Particle & Particle Systems Characterization. ,vol. 32, pp. 934- 943 ,(2015) , 10.1002/PPSC.201500055
Yu Luo, Jia Yang, Jingchao Li, Zhibo Yu, Guixiang Zhang, Xiangyang Shi, Mingwu Shen, Facile synthesis and functionalization of manganese oxide nanoparticles for targeted T1-weighted tumor MR imaging. Colloids and Surfaces B: Biointerfaces. ,vol. 136, pp. 506- 513 ,(2015) , 10.1016/J.COLSURFB.2015.09.053
Dongkyu Kim, Sangjin Park, Jae Hyuk Lee, Yong Yeon Jeong, Sangyong Jon, Antibiofouling polymer-coated gold nanoparticles as a contrast agent for in vivo X-ray computed tomography imaging. Journal of the American Chemical Society. ,vol. 129, pp. 7661- 7665 ,(2007) , 10.1021/JA071471P
Dongkyu Kim, Yong Yeon Jeong, Sangyong Jon, A drug-loaded aptamer-gold nanoparticle bioconjugate for combined CT imaging and therapy of prostate cancer. ACS Nano. ,vol. 4, pp. 3689- 3696 ,(2010) , 10.1021/NN901877H
Song Ge, Xiangyang Shi, Kai Sun, Changpeng Li, Ctirad Uher, James R. Baker, Mark M. Banaszak Holl, Bradford G. Orr, Facile hydrothermal synthesis of iron oxide nanoparticles with tunable magnetic properties Journal of Physical Chemistry C. ,vol. 113, pp. 13593- 13599 ,(2009) , 10.1021/JP902953T
Jingchao Li, Linfeng Zheng, Hongdong Cai, Wenjie Sun, Mingwu Shen, Guixiang Zhang, Xiangyang Shi, Polyethyleneimine-mediated synthesis of folic acid-targeted iron oxide nanoparticles for in vivo tumor MR imaging. Biomaterials. ,vol. 34, pp. 8382- 8392 ,(2013) , 10.1016/J.BIOMATERIALS.2013.07.070
Jimei Zhang, Chan Li, Xu Zhang, Shuaidong Huo, Shubin Jin, Fei-Fei An, Xiaodan Wang, Xiangdong Xue, C.I. Okeke, Guiyun Duan, Fengguang Guo, Xiaohong Zhang, Jifu Hao, Paul C. Wang, Jinchao Zhang, Xing-Jie Liang, In vivo tumor-targeted dual-modal fluorescence/CT imaging using a nanoprobe co-loaded with an aggregation-induced emission dye and gold nanoparticles. Biomaterials. ,vol. 42, pp. 103- 111 ,(2015) , 10.1016/J.BIOMATERIALS.2014.11.053
Shang-Wei Chou, Yu-Hong Shau, Ping-Ching Wu, Yu-Sang Yang, Dar-Bin Shieh, Chia-Chun Chen, In Vitro and in Vivo Studies of FePt Nanoparticles for Dual Modal CT/MRI Molecular Imaging Journal of the American Chemical Society. ,vol. 132, pp. 13270- 13278 ,(2010) , 10.1021/JA1035013
Xiaoqing Hu, Yuxuan Ji, Mingliang Wang, Fei Miao, Hongmei Ma, Hebai Shen, Nengqin Jia, Water-soluble and biocompatible MnO@PVP nanoparticles for MR imaging in vitro and in vivo. Journal of Biomedical Nanotechnology. ,vol. 9, pp. 976- 984 ,(2013) , 10.1166/JBN.2013.1602