Optimal Camera Parameter Selection for State Estimation with Applications in Object Recognition

作者: J. Denzler , C.M. Brown , H. Niemann

DOI: 10.1007/3-540-45404-7_41

关键词:

摘要: In this paper we introduce a formalism for optimal camera parameter selection iterative state estimation. We consider framework based on Shannon's information theory and select the parameters that maximize mutual information, i.e. captured image conveys about true of system. The technique explicitly takes into account priori probability governing computation information. Thus, sequential decision process can be formed by treating posteriori at current time step in as next step. convergence proven. We demonstrate benefits our approach using an active object recognition scenario. results show outperforms random strategy, both sense rate number views necessary to return decision.

参考文章(12)
F. Deinzer, J. Denzler, H. Niemann, Classifier Independent Viewpoint Selection for 3-D Object Recognition Mustererkennung 2000, 22. DAGM-Symposium. pp. 237- 244 ,(2000) , 10.1007/978-3-642-59802-9_30
Dieter Fox, Sebastian Burgard, Wolfram, Thrun, Markov localization for mobile robots in dynamic environments Journal of Artificial Intelligence Research. ,vol. 11, pp. 391- 427 ,(1999) , 10.1613/JAIR.616
T. Arbel, F.P. Ferrie, Viewpoint selection by navigation through entropy maps international conference on computer vision. ,vol. 1, pp. 248- 254 ,(1999) , 10.1109/ICCV.1999.791227
Dieter Fox, Wolfram Burgard, Sebastian Thrun, Active Markov localization for mobile robots Robotics and Autonomous Systems. ,vol. 25, pp. 195- 207 ,(1998) , 10.1016/S0921-8890(98)00049-9
B. Schiele, J.L. Crowley, Transinformation for active object recognition international conference on computer vision. pp. 249- 254 ,(1998) , 10.1109/ICCV.1998.710726
L. Paletta, M. Prantl, A. Pinz, Learning temporal context in active object recognition using Bayesian analysis international conference on pattern recognition. ,vol. 1, pp. 695- 699 ,(2000) , 10.1109/ICPR.2000.905482
Hiroshi Murase, Shree K. Nayar, Visual learning and recognition of 3-D objects from appearance International Journal of Computer Vision. ,vol. 14, pp. 5- 24 ,(1995) , 10.1007/BF01421486
C.A. Noonan, Entropy measures of multi-sensor fusion performance IEE Colloquium on Target Tracking and Data Fusion. pp. 15- 15 ,(1996) , 10.1049/IC:19961362
H. Borotschnig, L. Paletta, M. Prantl, A. Pinz, Appearance-based active object recognition Image and Vision Computing. ,vol. 18, pp. 715- 727 ,(2000) , 10.1016/S0262-8856(99)00075-X