Positive definite Toeplitz matrices, the Arnoldi process for isometric operators, and Gaussian quadrature on the unit circle

作者: William B Gragg

DOI: 10.1016/0377-0427(93)90294-L

关键词:

摘要: Abstract We show that the well-known Levinson algorithm for computing inverse Cholesky factorization of positive definite Toeplitz matrices can be viewed as a special case more general process. The latter process provides very efficient implementation Arnoldi when underlying operator is isometric. This analogous with Hermitian operators where Hessenberg matrix becomes tridiagonal and results in Lanczos investigate structure isometric simple modifications them move all their eigenvalues to unit circle. These are then interpreted abscissas analogs Gaussian quadrature, now on circle instead real line. trapezoidal rule appears analog Gauss-Legendre formula.

参考文章(11)
William B. Gragg, Fred G. Gustavson, Daniel D. Warner, David Y. Y. Yun, On fast computation of superdiagonal Padé fractions Algorithms and Theory in Filtering and Control. pp. 39- 42 ,(1982) , 10.1007/BFB0120971
Axel Ruhe, The two-sided arnoldi algorithm for nonsymmetric eigenvalue problems Springer, Berlin, Heidelberg. pp. 104- 120 ,(1983) , 10.1007/BFB0062097
W. E. Arnoldi, The principle of minimized iterations in the solution of the matrix eigenvalue problem Quarterly of Applied Mathematics. ,vol. 9, pp. 17- 29 ,(1951) , 10.1090/QAM/42792
George Cybenko, The Numerical Stability of the Levinson-Durbin Algorithm for Toeplitz Systems of Equations SIAM Journal on Scientific and Statistical Computing. ,vol. 1, pp. 303- 319 ,(1980) , 10.1137/0901021
James R. Bunch, Christopher P. Nielsen, Danny C. Sorensen, Rank-one modification of the symmetric eigenproblem Numerische Mathematik. ,vol. 31, pp. 31- 48 ,(1978) , 10.1007/BF01396012
William B. Gragg, Matrix interpretations and applications of the continued fraction algorithm Rocky Mountain Journal of Mathematics. ,vol. 4, pp. 213- 226 ,(1974) , 10.1216/RMJ-1974-4-2-213
A. S. Householder, Separation theorems for normalizable matrices Numerische Mathematik. ,vol. 9, pp. 46- 50 ,(1966) , 10.1007/BF02165228
H. Rutishauser, Bestimmung der Eigenwerte orthogonaler Matrizen Numerische Mathematik. ,vol. 9, pp. 104- 108 ,(1966) , 10.1007/BF02166029
A. S. Householder, Moments and characteristic roots. II Numerische Mathematik. ,vol. 11, pp. 126- 128 ,(1968) , 10.1007/BF02165308