On Generic Locally Convex Vector Functions

作者: V. Gershkovich , B. D. Craven , D. Ralph

DOI: 10.1007/978-1-4613-0301-5_10

关键词:

摘要: Local convexifiability, LC, is studied for generic smooth vector functions and with small codimension singularities. We discuss its connection Pareto optima describe the global structure of manifolds admitting locally convex functions. also spaces LC

参考文章(24)
R. E. Greene, K. Shiohama, Convex functions on complete noncompact manifolds : differentiable structure Annales Scientifiques De L Ecole Normale Superieure. ,vol. 14, pp. 357- 367 ,(1981) , 10.24033/ASENS.1410
V. Gershkovich, H. Rubinstein, MORSE THEORY FOR MIN-TYPE FUNCTIONS* Asian Journal of Mathematics. ,vol. 1, pp. 696- 715 ,(1997) , 10.4310/AJM.1997.V1.N4.A3
Mikhael Gromov, Partial Differential Relations ,(1986)
Jean-Baptiste Hiriart-Urruty, Claude Lemaréchal, Convex analysis and minimization algorithms ,(1993)
Martin Golubitsky, Victor Guillemin, Stable mappings and their singularities ,(1973)
Shing-Tung Yau, Non-existence of Continuous Convex Functions on Certain Riemannian Manifolds Mathematische Annalen. ,vol. 207, pp. 269- 270 ,(1974) , 10.1007/BF01351342
Kiyoshi Igusa, Higher Singularities of Smooth Functions are Unnecessary The Annals of Mathematics. ,vol. 119, pp. 1- 58 ,(1984) , 10.2307/2006962
Sidnie Dresher Feit, k-mersions of manifolds Acta Mathematica. ,vol. 122, pp. 173- 195 ,(1969) , 10.1007/BF02392010
Morgan A Hanson, On sufficiency of the Kuhn-Tucker conditions Journal of Mathematical Analysis and Applications. ,vol. 80, pp. 545- 550 ,(1981) , 10.1016/0022-247X(81)90123-2