Recognition of degraded characters using dynamic Bayesian networks

作者: Laurence Likforman-Sulem , Marc Sigelle

DOI: 10.1016/J.PATCOG.2008.03.022

关键词:

摘要: … couplings are proposed where interactions are achieved through the causal influence between state variables. We compare non-coupled and coupled … models, like neural networks and …

参考文章(37)
Thierry Artières, Rudy Sicard, Eric Petit, Modeling On-line Handwriting Using Pairwise Relational Features international conference on frontiers in handwriting recognition. ,(2006)
Structured Document Image Analysis Springer-Verlag New York, Inc.. ,(1992) , 10.1007/978-3-642-77281-8
Henry S. Baird, Document image defect models Document image analysis. pp. 315- 325 ,(1995) , 10.1007/978-3-642-77281-8_26
Nir Friedman, Daphne Koller, Being Bayesian about Network Structure uncertainty in artificial intelligence. pp. 201- 210 ,(2000)
Anna Tonazzini, Stefano Vezzosi, Luigi Bedini, Analysis and recognition of highly degraded printed characters International Journal on Document Analysis and Recognition. ,vol. 6, pp. 236- 247 ,(2003) , 10.1007/S10032-003-0115-Y
Hee-Seon Park, Seong-Whan Lee, Off-line recognition of large-set handwritten characters with multiple hidden Markov models Pattern Recognition. ,vol. 29, pp. 231- 244 ,(1996) , 10.1016/0031-3203(95)00081-X
M Schenkel, M Jabri, Low resolution, degraded document recognition using neural networks and hidden Markov models Pattern Recognition Letters. ,vol. 19, pp. 365- 371 ,(1998) , 10.1016/S0167-8655(97)00176-1
HEE-SEON PARK, SEONG-WHAN LEE, A TRULY 2-D HIDDEN MARKOV MODEL FOR OFF-LINE HANDWRITTEN CHARACTER RECOGNITION Pattern Recognition. ,vol. 31, pp. 1849- 1864 ,(1998) , 10.1016/S0031-3203(98)00057-0
Cheng-Lin Liu, Kazuki Nakashima, Hiroshi Sako, Hiromichi Fujisawa, Handwritten digit recognition: benchmarking of state-of-the-art techniques Pattern Recognition. ,vol. 36, pp. 2271- 2285 ,(2003) , 10.1016/S0031-3203(03)00085-2