Entropic-Wasserstein barycenters: PDE characterization, regularity and CLT

作者: Guillaume Carlier , Alexey Kroshnin , Katharina Eichinger

DOI:

关键词:

摘要: In this paper, we investigate properties of entropy-penalized Wasserstein barycenters introduced in [5] as a regularization [1]. After characterizing these terms system Monge-Ampere equations, prove some global moment and Sobolev bounds well higher regularity properties. We finally establish central limit theorem for entropic-Wasserstein barycenters.

参考文章(35)
Jérémie Bigot, Thierry Klein, Characterization of barycenters in the Wasserstein space by averaging optimal transport maps Esaim: Probability and Statistics. ,vol. 22, pp. 35- 57 ,(2018) , 10.1051/PS/2017020
Michel Ledoux, Michel Talagrand, Probability in Banach Spaces: Isoperimetry and Processes ,(1991)
Arnaud Doucet, Marco Cuturi, Fast Computation of Wasserstein Barycenters international conference on machine learning. pp. 685- 693 ,(2014)
Julien Rabin, Gabriel Peyré, Julie Delon, Marc Bernot, Wasserstein Barycenter and Its Application to Texture Mixing Lecture Notes in Computer Science. ,vol. 6667, pp. 435- 446 ,(2012) , 10.1007/978-3-642-24785-9_37
Guillaume Carlier, Adam Oberman, Edouard Oudet, NUMERICAL METHODS FOR MATCHING FOR TEAMS AND WASSERSTEIN BARYCENTERS Mathematical Modelling and Numerical Analysis. ,vol. 49, pp. 1621- 1642 ,(2015) , 10.1051/M2AN/2015033
Neil S Trudinger, David G Gilbarg, Elliptic Partial Differential Equations of Second Order ,(2018)
Martial Agueh, Guillaume Carlier, Barycenters in the Wasserstein Space Siam Journal on Mathematical Analysis. ,vol. 43, pp. 904- 924 ,(2011) , 10.1137/100805741