Variational Approach for Many-Body Systems at Finite Temperature.

作者: Tao Shi , Eugene Demler , J. Ignacio Cirac

DOI: 10.1103/PHYSREVLETT.125.180602

关键词:

摘要: We introduce an equation for density matrices that ensures a monotonic decrease of the free energy and reaches fixed point at Gibbs thermal. build variational approach many-body systems can be applied to broad class states, including all bosonic fermionic Gaussian, as well their generalizations obtained by unitary transformations, such polaron transformations in electron-phonon systems. apply it Holstein model on $20\ifmmode\times\else\texttimes\fi{}20$ $50\ifmmode\times\else\texttimes\fi{}50$ square lattices, predict phase separation between superconducting charge-density wave phases strong interaction regime.

参考文章(32)
F. Verstraete, J. J. García-Ripoll, J. I. Cirac, Matrix product density operators: simulation of finite-temperature and dissipative systems. Physical Review Letters. ,vol. 93, pp. 207204- 207204 ,(2004) , 10.1103/PHYSREVLETT.93.207204
Isaac L. Chuang, Michael A. Nielsen, Quantum Computation and Quantum Information ,(2000)
R. T. Scalettar, E. Y. Loh, J. E. Gubernatis, A. Moreo, S. R. White, D. J. Scalapino, R. L. Sugar, E. Dagotto, Phase diagram of the two-dimensional negative-U Hubbard model. Physical Review Letters. ,vol. 62, pp. 1407- 1410 ,(1989) , 10.1103/PHYSREVLETT.62.1407
Raimundo R. dos Santos, Attractive Hubbard model on a triangular lattice. Physical Review B. ,vol. 48, pp. 3976- 3982 ,(1993) , 10.1103/PHYSREVB.48.3976
M. Vekić, R. M. Noack, S. R. White, Charge-density waves versus superconductivity in the Holstein model with next-nearest-neighbor hopping Physical Review B. ,vol. 46, pp. 271- 278 ,(1992) , 10.1103/PHYSREVB.46.271
Julian Schwinger, Brownian Motion of a Quantum Oscillator Journal of Mathematical Physics. ,vol. 2, pp. 407- 432 ,(1961) , 10.1063/1.1703727
R. M. Noack, D. J. Scalapino, R. T. Scalettar, Charge-density-wave and pairing susceptibilities in a two-dimensional electron-phonon model Physical Review Letters. ,vol. 66, pp. 778- 781 ,(1991) , 10.1103/PHYSREVLETT.66.778
Steven R. White, Minimally Entangled Typical Quantum States at Finite Temperature Physical Review Letters. ,vol. 102, pp. 190601- ,(2009) , 10.1103/PHYSREVLETT.102.190601