Fourier transforms and the 2-adic span of periodic binary sequences

作者: M. Goresky , A.M. Klapper , L. Washington

DOI: 10.1109/18.825843

关键词:

摘要: In this paper we develop an arithmetic analog of Blahut's theorem (Blahut 1979, Massey 1986) which says that the linear complexity (or equivalent span) /spl lambda/(S) a periodic binary sequence S=a/sub 0/,a/sub 1/,... is equal to number nonzero coefficients in discrete Fourier transform (DFT) S. If S used as key stream cipher then measure security against cryptoanalytic attack: feedback shift register (LFSR) generates can be determined from 2/spl bits by using Berlekamp-Massey algorithm, and resulting will have length lambda/(S). So makes precise common observation "complex" signal one with many components.

参考文章(6)
Kenneth Ireland, Michael Rosen, A classical introduction to modern number theory GTM. ,vol. 84, ,(1982) , 10.1007/978-1-4757-1779-2
James L. Massey, Shirlei Serconek, Linear Complexity of Periodic Sequences: A General Theory international cryptology conference. pp. 358- 371 ,(1996) , 10.1007/3-540-68697-5_27
R. E. Blahut, Transform techniques for error control codes Ibm Journal of Research and Development. ,vol. 23, pp. 299- 315 ,(1979) , 10.1147/RD.233.0299
Andrew Klapper, Mark Goresky, Feedback shift registers, 2-adic span, and combiners with memory Journal of Cryptology. ,vol. 10, pp. 111- 147 ,(1997) , 10.1007/S001459900024
Burton S. Kaliski, Advances in Cryptology - CRYPTO '97 ,(1997)
Martin Golubitsky, Gaisi Takeuti, Béla Bollobás, Tom M. Apostol, Glen Bredon, John L. Kelley, B. A. Dubrovin, Peter Walters, John Stillwell, Joseph J. Rotman, Raoul Bott, Jane Gilman, John M. Lee, Jiří Matoušek, Saunders Mac Lane, Rajendra Bhatia, M. Ram Murty, Ioannis Karatzas, William Arveson, Henri Cohen, Wolfgang Walter, Graduate Texts in Mathematics ,(1977)