QSAR without borders

作者: Eugene N Muratov , Jürgen Bajorath , Robert P Sheridan , Igor V Tetko , Dmitry Filimonov

DOI: 10.1039/D0CS00098A

关键词:

摘要: Prediction of chemical bioactivity and physical properties has been one the most important applications statistical more recently, machine learning artificial intelligence methods in sciences. This field research, broadly known as quantitative structure-activity relationships (QSAR) modeling, developed many algorithms found a broad range organic medicinal chemistry past 55+ years. Perspective summarizes recent technological advances QSAR modeling but it also highlights applicability algorithms, methods, validation practices to wide research areas outside traditional boundaries including synthesis planning, nanotechnology, materials science, biomaterials, clinical informatics. As modern generate rapidly increasing amounts data, knowledge robust data-driven modelling professed within can become essential for scientists working both research. We hope that this contribution highlighting generalizable components will serve address challenge.

参考文章(324)
Connor W. Coley, William H. Green, Klavs F. Jensen, Machine Learning in Computer-Aided Synthesis Planning Accounts of Chemical Research. ,vol. 51, pp. 1281- 1289 ,(2018) , 10.1021/ACS.ACCOUNTS.8B00087
Daniel P. Tabor, Loïc M. Roch, Semion K. Saikin, Christoph Kreisbeck, Dennis Sheberla, Joseph H. Montoya, Shyam Dwaraknath, Muratahan Aykol, Carlos Ortiz, Hermann Tribukait, Carlos Amador-Bedolla, Christoph J. Brabec, Benji Maruyama, Kristin A. Persson, Alán Aspuru-Guzik, Accelerating the discovery of materials for clean energy in the era of smart automation Nature Reviews Materials. ,vol. 3, pp. 5- 20 ,(2018) , 10.1038/S41578-018-0005-Z
Pavel V Pogodin, Alexey A Lagunin, Anastasia V Rudik, Dmitry A Filimonov, Dmitry S Druzhilovskiy, Mark C Nicklaus, Vladimir V Poroikov, None, How to Achieve Better Results Using PASS-Based Virtual Screening: Case Study for Kinase Inhibitors. Frontiers in Chemistry. ,vol. 6, pp. 133- ,(2018) , 10.3389/FCHEM.2018.00133
Robert M.T. Madiona, Nicholas G. Welch, Stephanie B. Russell, David A. Winkler, Judith A. Scoble, Benjamin W. Muir, Paul J. Pigram, Multivariate analysis of ToF-SIMS data using mass segmented peak lists Surface and Interface Analysis. ,vol. 50, pp. 713- 728 ,(2018) , 10.1002/SIA.6462
My Kieu Ha, Tung Xuan Trinh, Jang Sik Choi, Desy Maulina, Hyung Gi Byun, Tae Hyun Yoon, Toxicity Classification of Oxide Nanomaterials: Effects of Data Gap Filling and PChem Score-based Screening Approaches Scientific Reports. ,vol. 8, pp. 3141- ,(2018) , 10.1038/S41598-018-21431-9
Yu-Chen Lo, Stefano E. Rensi, Wen Torng, Russ B. Altman, Machine learning in chemoinformatics and drug discovery. Drug Discovery Today. ,vol. 23, pp. 1538- 1546 ,(2018) , 10.1016/J.DRUDIS.2018.05.010
Lorena Simón-Vidal, Oihane García-Calvo, Uxue Oteo, Sonia Arrasate, Esther Lete, Nuria Sotomayor, Humberto González-Díaz, Perturbation-Theory and Machine Learning (PTML) Model for High-Throughput Screening of Parham Reactions: Experimental and Theoretical Studies. Journal of Chemical Information and Modeling. ,vol. 58, pp. 1384- 1396 ,(2018) , 10.1021/ACS.JCIM.8B00286
Loïc M. Roch, Florian Häse, Christoph Kreisbeck, Teresa Tamayo-Mendoza, Lars P. E. Yunker, Jason E. Hein, Alán Aspuru-Guzik, ChemOS: Orchestrating autonomous experimentation. Science Robotics. ,vol. 3, ,(2018) , 10.1126/SCIROBOTICS.AAT5559
Corey Oses, Eric Gossett, David Hicks, Frisco Rose, Michael J Mehl, Eric Perim, Ichiro Takeuchi, Stefano Sanvito, Matthias Scheffler, Yoav Lederer, Ohad Levy, Cormac Toher, Stefano Curtarolo, None, AFLOW-CHULL: Cloud-Oriented Platform for Autonomous Phase Stability Analysis. Journal of Chemical Information and Modeling. ,vol. 58, pp. 2477- 2490 ,(2018) , 10.1021/ACS.JCIM.8B00393
Runhai Ouyang, Stefano Curtarolo, Emre Ahmetcik, Matthias Scheffler, Luca M. Ghiringhelli, SISSO: a compressed-sensing method for identifying the best low-dimensional descriptor in an immensity of offered candidates Physical Review Materials. ,vol. 2, pp. 083802- ,(2018) , 10.1103/PHYSREVMATERIALS.2.083802