Long Time Behavior of a Two-Phase Optimal Design for the Heat Equation

作者: Grégoire Allaire , Arnaud Münch , Francisco Periago , None

DOI: 10.1137/090780481

关键词:

摘要: We consider a two-phase isotropic optimal design problem within the context of transient heat equation. The objective is to minimize average dissipated thermal energy during fixed time interval $[0,T]$. time-independent material properties are taken as variables. A full relaxation for this was established in [A. Munch, P. Pedregal, and F. Periago, J. Math. Pures Appl. (9), 89 (2008), pp. 225-247] by using homogenization method. In paper, we study asymptotic behavior $T$ goes infinity solutions relaxed prove that they converge an corresponding optimization stationary Next necessary optimality conditions under equation use those characterize microstructure designs, which appears form sequential laminate rank at most $N$, spatial dimension. An analysis lets us that, large enough, order lamination is, fact, $N-1$. Several numerical experiments two dimensions complete our study.

参考文章(14)
Bernhard Kawohl, Olivier Pironneau, Luc Tartar, Jean-Paul Zolésio, Luc Tartar, An introduction to the homogenization method in optimal design Springer Berlin Heidelberg. pp. 47- 156 ,(2000) , 10.1007/BFB0106742
Faustino Maestre Caballero, Arnaud Münch, Pablo Pedregal Tercero, None, A Spatio-temporal Design Problem for a Damped Wave Equation Siam Journal on Applied Mathematics. ,vol. 68, pp. 109- 132 ,(2007) , 10.1137/07067965X
Jakob S Jensen, None, Space-time topology optimization for one-dimensional wave propagation Computer Methods in Applied Mechanics and Engineering. ,vol. 198, pp. 705- 715 ,(2009) , 10.1016/J.CMA.2008.10.008
O. Pantz, K. Trabelsi, A Post-Treatment of the Homogenization Method for Shape Optimization Siam Journal on Control and Optimization. ,vol. 47, pp. 1380- 1398 ,(2008) , 10.1137/070688900
Konstantin A. Lurie, Some New Advances in the Theory of Dynamic Materials Journal of Elasticity. ,vol. 72, pp. 229- 239 ,(2003) , 10.1023/B:ELAS.0000018780.82718.19
S. Turteltaub, Optimal material properties for transient problems Structural and Multidisciplinary Optimization. ,vol. 22, pp. 157- 166 ,(2001) , 10.1007/S001580100133
Arnaud Münch, Pablo Pedregal, Francisco Periago, None, Relaxation of an optimal design problem for the heat equation Journal de Mathématiques Pures et Appliquées. ,vol. 89, pp. 225- 247 ,(2008) , 10.1016/J.MATPUR.2007.12.009
Nenad Antonić, Marko Vrdoljak, Gradient methods for multiple state optimal design problems Annali Dell'universita' Di Ferrara. ,vol. 53, pp. 177- 187 ,(2007) , 10.1007/S11565-007-0025-X