Non-K\"ahler Calabi-Yau manifolds

作者: Valentino Tosatti

DOI: 10.1090/CONM/644/12770

关键词:

摘要: We study the class of compact complex manifolds whose first Chern vanishes in Bott-Chern cohomology. This includes all with torsion canonical bundle, but it is strictly larger. After making some elementary remarks, we show that a manifold Fujiki's C vanishing has bundle. also give examples non-Kahler Calabi-Yau manifolds, and discuss problem defining constructing metrics on them.

参考文章(14)
Alfred Gray, Some examples of almost Hermitian manifolds Illinois Journal of Mathematics. ,vol. 10, pp. 353- 366 ,(1966) , 10.1215/IJM/1256055115
Aleksey Zinger, Reduced genus-one Gromov-Witten invariants Journal of Differential Geometry. ,vol. 83, pp. 407- 460 ,(2009) , 10.4310/JDG/1261495337
Michael Bershadsky, Sergio Cecotti, Hirosi Ooguri, Cumrun Vafa, None, Holomorphic anomalies in topological field theories Nuclear Physics. ,vol. 405, pp. 279- 304 ,(1993) , 10.1016/0550-3213(93)90548-4
Ming-Tao Chuan, Existence of Hermitian-Yang-Mills metrics under conifold transitions arXiv: Differential Geometry. ,(2010)
Marisa Fernández, Stefan Ivanov, Luis Ugarte, Raquel Villacampa, Non-Kaehler Heterotic String Compactifications with Non-Zero Fluxes and Constant Dilaton Communications in Mathematical Physics. ,vol. 288, pp. 677- 697 ,(2009) , 10.1007/S00220-008-0714-Z
Andrew Strominger, Shing-Tung Yau, Eric Zaslow, Mirror symmetry is T-duality Nuclear Physics B. ,vol. 479, pp. 243- 259 ,(1996) , 10.1016/0550-3213(96)00434-8
Eugenio Calabi, Construction and properties of some 6-dimensional almost complex manifolds Transactions of the American Mathematical Society. ,vol. 87, pp. 407- 438 ,(1958) , 10.1090/S0002-9947-1958-0130698-7
E. Witten, Two-dimensional gravity and intersection theory on moduli space Surveys in differential geometry. ,vol. 1, pp. 243- 310 ,(1990) , 10.4310/SDG.1990.V1.N1.A5
B.R. Greene, M.R. Plesser, Duality in Calabi-Yau moduli space Nuclear Physics. ,vol. 338, pp. 15- 37 ,(1990) , 10.1016/0550-3213(90)90622-K
Alexander Givental, Equivariant Gromov-Witten invariants International Mathematics Research Notices. ,vol. 1996, pp. 613- 663 ,(1996) , 10.1155/S1073792896000414