Bayes Factors and Multimodel Inference

作者: William A. Link , Richard J. Barker

DOI: 10.1007/978-0-387-78151-8_26

关键词:

摘要: Multimodel inference has two main themes: model selection, and averaging. Model averaging is a means of making conditional on set, rather than selected model, allowing formal recognition the uncertainty associated with choice. The Bayesian paradigm provides natural framework for averaging, context evaluation commonly used AIC weights. We review multimodel inference, noting importance Bayes factors. Noting sensitivity factors to choice priors parameters, we define propose nonpreferential as offering reasonable standard objective inference.

参考文章(14)
A. F. M. Smith, D. J. Spiegelhalter, Bayes Factors and Choice Criteria for Linear Models Journal of the Royal Statistical Society: Series B (Methodological). ,vol. 42, pp. 213- 220 ,(1980) , 10.1111/J.2517-6161.1980.TB01122.X
D. J. Spiegelhalter, A. F. M. Smith, Bayes Factors for Linear and Log-Linear Models with Vague Prior Information Journal of the royal statistical society series b-methodological. ,vol. 44, pp. 377- 387 ,(1982) , 10.1111/J.2517-6161.1982.TB01217.X
Chris T. Volinsky, Adrian E. Raftery, David Madigan, Jennifer A. Hoeting, Bayesian model averaging: a tutorial (with comments by M. Clyde, David Draper and E. I. George, and a rejoinder by the authors Statistical Science. ,vol. 14, pp. 382- 417 ,(1999) , 10.1214/SS/1009212519
Fred S. Guthery, Kenneth P. Burnham, David R. Anderson, Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach The Journal of Wildlife Management. ,vol. 67, pp. 655- ,(2003) , 10.2307/3802723
Chris Chatfield, Model uncertainty, data mining and statistical inference Journal of The Royal Statistical Society Series A-statistics in Society. ,vol. 158, pp. 419- 444 ,(1995) , 10.2307/2983440
Joseph B Kadane, Nicole A Lazar, Methods and Criteria for Model Selection Journal of the American Statistical Association. ,vol. 99, pp. 279- 290 ,(2004) , 10.1198/016214504000000269
William A. Link, Richard J. Barker, MODEL WEIGHTS AND THE FOUNDATIONS OF MULTIMODEL INFERENCE Ecology. ,vol. 87, pp. 2626- 2635 ,(2006) , 10.1890/0012-9658(2006)87[2626:MWATFO]2.0.CO;2
James O. Berger, Luis R. Pericchi, The Intrinsic Bayes Factor for Model Selection and Prediction Journal of the American Statistical Association. ,vol. 91, pp. 109- 122 ,(1996) , 10.1080/01621459.1996.10476668