Heteroleptic platinum(II) NHC complexes with a C^C* cyclometalated ligand – synthesis, structure and photophysics

作者: Alexander Tronnier , Ute Heinemeyer , Stefan Metz , Gerhard Wagenblast , Ingo Muenster

DOI: 10.1039/C4TC02575J

关键词:

摘要: Platinum(II) complexes [(NHC)Pt(L)] with various β-diketonate based auxiliary ligands (L: 3-meacac = 3-methylacetylacetonato, dpm dipivaloylmethanato, dbm dibenzoylmethanato, mesacac dimesitoylmethanato, duratron bis(2,3,5,6-tetramethylbenzoyl)methanato) and a C^C* cyclometalated N-heterocyclic carbene ligand (NHC: dpbic 1,3-diphenylbenzo[d]imidazol-2-ylidene, dpnac 1,3-diphenylnaphtho[2,3-d]imidazol-2-ylidene or bnbic 1-phenyl-3-benzylbenzo[d]imidazol-2-ylidene) were found to show different aggregation photophysical properties depending on the ligand. Eight prepared from silver(I)–NHC intermediate by transmetalation, cyclometalation subsequent treatment potassium-tert-butanolate β-diketone. They fully characterized standard techniques including 195Pt NMR. Five additionally 2D NMR spectroscopy (COSY, HSQC, HMBC NOESY). Solid-state structures of five could be obtained tendency square-planar compounds form pairs Pt–Pt distances bulkiness substituents at The result measurements in amorphous PMMA films reveals quantum yields up 85% an emission maximum blue region comparatively short decay lifetimes (3.6 μs). Density functional theory (DFT/TD-DFT) calculations performed elucidate process revealed predominant 3ILCT/3MLCT character. Organic light-emitting devices (OLEDs) comprising one achieved 12.6% EQE, 11.9 lm W−1 luminous efficacy 25.2 cd A−1 current efficiency 300 m−2. influence additional hole-transporter emissive layer was investigated improve device lifetime factor seven.

参考文章(99)
Mario Tenne, Yvonne Unger, Thomas Strassner, (Acetylacetonato-κ2O,O')[1-(4-bromophenyl-κC2)-3-methylimidazol-2-ylidene-κC2]platinum(II). Acta Crystallographica Section C-crystal Structure Communications. ,vol. 68, ,(2012) , 10.1107/S0108270112027783
Andreas F. Rausch, Herbert H. H. Homeier, Hartmut Yersin, Organometallic Pt(II) and Ir(III) Triplet Emitters for OLED Applications and the Role of Spin–Orbit Coupling: A Study Based on High-Resolution Optical Spectroscopy Photophysics of Organometallics. ,vol. 42, pp. 193- 235 ,(2010) , 10.1007/3418_2009_6
Lisa Murphy, J. A. Gareth Williams, Luminescent Platinum Compounds: From Molecules to OLEDs momo. ,vol. 28, pp. 75- 111 ,(2010) , 10.1007/978-3-642-01866-4_3
Hai-Feng Xiang, Siu-Wai Lai, P. T. Lai, Chi-Ming Che, Phosphorescent Platinum(II) Materials for OLED Applications Highly Efficient OLEDs with Phosphorescent Materials. pp. 259- 282 ,(2008) , 10.1002/9783527621309.CH7
M. A. Baldo, D. F. O'Brien, Y. You, A. Shoustikov, S. Sibley, M. E. Thompson, S. R. Forrest, Highly efficient phosphorescent emission from organic electroluminescent devices Nature. ,vol. 395, pp. 151- 154 ,(1998) , 10.1038/25954
Alexander Tronnier, Nicole Nischan, Stefan Metz, Gerhard Wagenblast, Ingo Münster, Thomas Strassner, Phosphorescent C∧C* Cyclometalated PtII Dibenzofuranyl-NHC Complexes – An Auxiliary Ligand Study European Journal of Inorganic Chemistry. ,vol. 2014, pp. 256- 264 ,(2014) , 10.1002/EJIC.201301398
P. Jeffrey Hay, Willard R. Wadt, Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals Journal of Chemical Physics. ,vol. 82, pp. 299- 310 ,(1985) , 10.1063/1.448975
Véronique Guerchais, Jean-Luc Fillaut, Sensory luminescent iridium(III) and platinum(II) complexes for cation recognition Coordination Chemistry Reviews. ,vol. 255, pp. 2448- 2457 ,(2011) , 10.1016/J.CCR.2011.04.006