When is Deep Learning the Best Approach to Knowledge Tracing

作者: Theophile Gervet , Ken Koedinger , Jeff Schneider , Tom Mitchell , None

DOI: 10.5281/ZENODO.4143614

关键词:

摘要: … which approach to knowledge tracing makes the … Knowledge Tracing, lag behind other approaches. Logistic regression is less susceptible to overfitting than Deep Knowledge Tracing (…

参考文章(27)
Susan Bull, Judy Kay, Open Learner Models Studies in Computational Intelligence. pp. 301- 322 ,(2010) , 10.1007/978-3-642-14363-2_15
José P. González-Brenes, Modeling Skill Acquisition Over Time with Sequence and Topic Modeling international conference on artificial intelligence and statistics. pp. 296- 305 ,(2015)
Mehran Sahami, Leonidas Guibas, Jonathan Bassen, Jonathan Huang, Chris Piech, Surya Ganguli, Jascha Sohl-Dickstein, Deep knowledge tracing neural information processing systems. ,vol. 28, pp. 505- 513 ,(2015)
Kenneth R Koedinger, Emma Brunskill, Ryan SJd Baker, Elizabeth A McLaughlin, John Stamper, None, New Potentials for Data-Driven Intelligent Tutoring System Development and Optimization Ai Magazine. ,vol. 34, pp. 27- 41 ,(2013) , 10.1609/AIMAG.V34I3.2484
Diederik P. Kingma, Jimmy Ba, Adam: A Method for Stochastic Optimization arXiv: Learning. ,(2014)
Kenneth R. Koedinger, Hao Cen, Philip I. Pavlik, Performance Factors Analysis --A New Alternative to Knowledge Tracing artificial intelligence in education. ,vol. 2009, pp. 531- 538 ,(2009)
Albert T. Corbett, John R. Anderson, Knowledge tracing: Modeling the acquisition of procedural knowledge User Modeling and User-adapted Interaction. ,vol. 4, pp. 253- 278 ,(1995) , 10.1007/BF01099821
Kenneth R. Koedinger, Albert T. Corbett, Charles Perfetti, The Knowledge-Learning-Instruction Framework: Bridging the Science-Practice Chasm to Enhance Robust Student Learning. Cognitive Science. ,vol. 36, pp. 757- 798 ,(2012) , 10.1111/J.1551-6709.2012.01245.X
Michael C Mozer, Robert Lindsey, Mohammad Khajah, Automatic Discovery of Cognitive Skills to Improve the Prediction of Student Learning neural information processing systems. ,vol. 27, pp. 1386- 1394 ,(2014)