Quasidiagonality of nuclear C*-algebras

作者: Aaron Tikuisis , Stuart White , Wilhelm Winter

DOI: 10.4007/ANNALS.2017.185.1.4

关键词:

摘要: We prove that faithful traces on separable and nuclear C*-algebras in the UCT class are quasidiagonal. This has a number of consequences. Firstly, by results many hands, classification unital, separable, simple finite dimension which satisfy is now complete. Secondly, our result links to general version Toms-Winter conjecture expected way hence clarifies relation between decomposition rank dimension. Finally, we confirm Rosenberg conjecture: discrete, amenable groups have quasidiagonal C*-algebras.

参考文章(75)
M. Rørdam, Classification of Nuclear, Simple C*-algebras Springer Berlin Heidelberg. pp. 1- 145 ,(2002) , 10.1007/978-3-662-04825-2_1
Eberhard Kirchberg, Central Sequences in C*-Algebras and Strongly Purely Infinite Algebras Springer Berlin Heidelberg. pp. 175- 231 ,(2006) , 10.1007/978-3-540-34197-0_10
Marius Dadarlat, Terry A. Loring, A universal multicoefficient theorem for the Kasparov groups Duke Mathematical Journal. ,vol. 84, pp. 355- 377 ,(1996) , 10.1215/S0012-7094-96-08412-4
Uffe Haagerup, Quasitraces on Exact $C^\ast$-Algebras are Traces arXiv: Operator Algebras. ,vol. 858, pp. 106- 129 ,(1994)
Nathanial P. Brown, Wilhelm Winter, Quasitraces are Traces: A Short Proof of the Finite-Nuclear-Dimension Case arXiv: Operator Algebras. ,(2010)
Wilhelm Winter, Strongly self-absorbing C*-algebras are Z-stable arXiv: Operator Algebras. ,(2009)
S. White, W. Winter, A. S. Toms, $\mathcal Z$-stability and finite dimensional tracial boundaries arXiv: Operator Algebras. ,(2012) , 10.1093/IMRN/RNU001
George A. Elliott, Guihua Gong, Huaxin Lin, Cornel Pasnicu, Abelian C∗-subalgebras of C∗-algebras of real rank zero and inductive limit C∗-algebras Duke Mathematical Journal. ,vol. 85, pp. 511- 554 ,(1996) , 10.1215/S0012-7094-96-08520-8
Joachim Zacharias, Wilhelm Winter, Completely positive maps of order zero arXiv: Operator Algebras. ,(2009)