Probabilistic asthma case finding: a noisy or reformulation.

作者: Stephen M. Downs , Vibha Anand

DOI:

关键词:

摘要: Bayesian Networks are used to model domain knowledge with natural perception of causal influences. Even though reduce the number probabilities required specify relationships in domain, specifying these for large networks can be prohibitive. The Noisy-OR formalism Network (BN) overcomes this shortcoming by making an assumption independence among modeled causes and their common effect. However, accuracy has rarely been tested. In paper we report results empirical study asthma case finding that compares reformulation expert BN trained using clinical data set from Regenstrief Medical Record System. Our show formulation performs comparably expert’s suggesting is robust, at least domain.

参考文章(15)
Paul G. Biondich, Paul G. Biondich, Marc B. Rosenman, Marc B. Rosenman, Gilbert C. Liu, Stephen M. Downs, Stephen M. Downs, Vibha Anand, Child Health Improvement through Computer Automation: the CHICA system. Studies in health technology and informatics. ,vol. 107, pp. 187- 191 ,(2004) , 10.3233/978-1-60750-949-3-187
G. A. Wilson, C. J. McDonald, J. M. Overhage, Douglas Martin, W. M. Tierney, The Regenstrief Medical Record System: 20 years of experience in hospitals, clinics, and neighborhood health centers. M.D. computing : computers in medical practice. ,vol. 9, pp. 206- 217 ,(1992)
David Heckerman, John S. Breese, A New Look at Causal Independence Uncertainty Proceedings 1994. pp. 286- 292 ,(1994) , 10.1016/B978-1-55860-332-5.50041-9
F.J. Díez, Parameter adjustment in Bayes networks. the generalized noisy OR-gate uncertainty in artificial intelligence. pp. 99- 105 ,(1993) , 10.1016/B978-1-4832-1451-1.50016-0
Max Henrion, Some Practical Issues in Constructing Belief Networks. uncertainty in artificial intelligence. pp. 161- 174 ,(1987)
Sampath Srinivas, A generalization of the noisy-or model uncertainty in artificial intelligence. pp. 208- 215 ,(1993) , 10.1016/B978-1-4832-1451-1.50030-5
A. M. Shwe, E. D. Heckerman, M. Henrion, J. E. Horvitz, P. H. Lehmann, F. G. Cooper, B. Middleton, Probabilistic diagnosis using a reformulation of the INTERNIST-1/QMR knowledge base. II. Evaluation of diagnostic performance. Methods of Information in Medicine. ,vol. 30, pp. 256- 267 ,(1991) , 10.1055/S-0038-1634847
Agnieszka Oniśko, Marek J. Druzdzel, Hanna Wasyluk, Learning Bayesian network parameters from small data sets: application of Noisy-OR gates International Journal of Approximate Reasoning. ,vol. 27, pp. 165- 182 ,(2001) , 10.1016/S0888-613X(01)00039-1
J.F. Lemmer, D.E. Gossink, Recursive noisy OR - a rule for estimating complex probabilistic interactions systems man and cybernetics. ,vol. 34, pp. 2252- 2261 ,(2004) , 10.1109/TSMCB.2004.834424