Linear constraints for deformable non-uniform B-spline surfaces

作者: George Celniker , Will Welch , None

DOI: 10.1145/147156.147191

关键词:

摘要:

参考文章(19)
Michael Gleicher, Andrew Paul. Witkin, William Welch, Manipulating surfaces differentially ,(1991)
Antti Pramila, SHIP HULL SURFACE USING FINITE ELEMENTS International shipbuilding progress. ,vol. 25, pp. 97- 107 ,(1978) , 10.3233/ISP-1978-2528403
Cornelius Lanczos, The Variational Principles of Mechanics ,(1949)
M. I. G. Bloor, M. J. Wilson, Blend Design as a Boundary-Value Problem Theory and Practice of Geometric Modeling. pp. 221- 234 ,(1989) , 10.1007/978-3-642-61542-9_14
George William Celniker, ShapeWright--finite element based free-form shape design Massachusetts Institute of Technology. ,(1990)
J. Baumgarte, Stabilization of constraints and integrals of motion in dynamical systems Computer Methods in Applied Mechanics and Engineering. ,vol. 1, pp. 1- 16 ,(1972) , 10.1016/0045-7825(72)90018-7
Demetri Terzopoulos, John Platt, Alan Barr, Kurt Fleischer, Elastically deformable models Proceedings of the 14th annual conference on Computer graphics and interactive techniques - SIGGRAPH '87. ,vol. 21, pp. 205- 214 ,(1987) , 10.1145/37401.37427
George Celniker, Dave Gossard, Deformable curve and surface finite-elements for free-form shape design Proceedings of the 18th annual conference on Computer graphics and interactive techniques - SIGGRAPH '91. ,vol. 25, pp. 257- 266 ,(1991) , 10.1145/122718.122746
G. Strang, L. B. Freund, Introduction to applied mathematics ,(1986)