Multi-class pattern classification using single, multi-dimensional feature-space feature extraction evolved by multi-objective genetic programming and its application to network intrusion detection

作者: Khaled Badran , Peter Rockett

DOI: 10.1007/S10710-011-9143-4

关键词:

摘要: … A simple and fast multi-class classifier is then implemented … decision space—is a free parameter to be optimized inside … rank deficiency of a matrix. We need to identify redundant …

参考文章(62)
Tao Xiong, V. Cherkassky, A combined SVM and LDA approach for classification international joint conference on neural network. ,vol. 3, pp. 1455- 1459 ,(2005) , 10.1109/IJCNN.2005.1556089
Wolfgang Banzhaf, Markus F. Brameier, Linear Genetic Programming ,(2006)
Yang Zhang, Peter I Rockett, Feature Extraction Using Multi-Objective Genetic Programming Multi-Objective Machine Learning. pp. 75- 99 ,(2006) , 10.1007/3-540-33019-4_4
Michael T. Heath, Eric M. Munson, Scientific Computing: An Introductory Survey McGraw-Hill. ,(1996)
Yaochu Jin, Multi-objective machine learning Springer Verlag. ,(2006) , 10.1007/3-540-33019-4
David A. Van Veldhuizen, Gary B. Lamont, Evolutionary algorithms for solving multi-objective problems ,(2002)
Eleazar Eskin, Andrew Arnold, Michael Prerau, Leonid Portnoy, Sal Stolfo, A Geometric Framework for Unsupervised Anomaly Detection Applications of Data Mining in Computer Security. pp. 77- 101 ,(2002) , 10.1007/978-1-4615-0953-0_4
James Franklin, The elements of statistical learning : data mining, inference,and prediction The Mathematical Intelligencer. ,vol. 27, pp. 83- 85 ,(2005) , 10.1007/BF02985802
E Eskin, Andrew Arnold, Michael Prerau, Leonid Portnoy, Sal Stolfo, A GEOMETRIC FRAMEWORK FOR UNSUPERVISED ANOMALY DETECTION: DETECTING INTRUSIONS IN UNLABELED DATA APPLICATIONS OF DATA MINING IN COMPUTER SECURITY. pp. 0- 0 ,(2002) , 10.7916/D8D50TQT
Krzysztof Krawiec, Genetic Programming-based Construction of Features for Machine Learning and Knowledge Discovery Tasks Genetic Programming and Evolvable Machines. ,vol. 3, pp. 329- 343 ,(2002) , 10.1023/A:1020984725014