Forward Moving Average Representation in Multivariate MA(1) Processes

作者: M. Mohammadpour , A. R. Soltani

DOI: 10.1080/03610920902788095

关键词:

摘要: Forward-moving average coefficients are in general different from their corresponding backward-moving multivariate stationary time series. There is lack of practical methods to derive forward-moving the backward ones. In this article, we establish a new approach for obtaining moving processes order one.

参考文章(9)
N. Wiener, P. Masani, The prediction theory of multivariate stochastic processes: I. The regularity condition Acta Mathematica. ,vol. 98, pp. 111- 150 ,(1957) , 10.1007/BF02404472
C. G. Khatri, Sujit Kumar Mitra, Hermitian and Nonnegative Definite Solutions of Linear Matrix Equations SIAM Journal on Applied Mathematics. ,vol. 31, pp. 579- 585 ,(1976) , 10.1137/0131050
R. Cheng, M. Pourahmadi, Baxter's inequality and convergence of finite predictors of multivariate stochastic processes Probability Theory and Related Fields. ,vol. 95, pp. 115- 124 ,(1993) , 10.1007/BF01197341
M. Deistler, E. J. Hannan, The statistical theory of linear systems ,(1988)
A. R. Soltani, M. Mohammadpour, Moving Average Representations for Multivariate Stationary Processes Journal of Time Series Analysis. ,vol. 27, pp. 831- 841 ,(2006) , 10.1111/J.1467-9892.2006.00503.X
Mohsen Pourahmadi, Alternating projections and interpolation of stationary processes Journal of Applied Probability. ,vol. 29, pp. 921- 931 ,(1992) , 10.1017/S0021900200043795
N. Wiener, P. Masani, The prediction theory of multivariate stochastic processes, II: The linear predictor Acta Mathematica. ,vol. 99, pp. 93- 137 ,(1958) , 10.1007/BF02392423