A fast pseudo random permutation generator with applications to cryptology

作者: Selim G. Akl , Henk Meijer

DOI: 10.1007/3-540-39568-7_21

关键词:

摘要: Pseudo random sequences of integers are most commonly generated by linear congruence methods [5] or shift registers [1]. These can be used in cryptology if they cryptographically secure [9]: A pseudo-random sequence is given any segment the sequence, it computationally infeasible to compute other segments sequence.

参考文章(12)
Gary D. Knott, A Numbering System for Permutations of Combinations. Communications of The ACM. ,vol. 19, pp. 355- 356 ,(1976)
Lenore Blum, Manuel Blum, Michael Shub, Comparison of Two Pseudo-Random Number Generators international cryptology conference. pp. 61- 78 ,(1983) , 10.1007/978-1-4757-0602-4_6
Umesh V. Vazirani, Vijay V. Vazirani, Trapdoor pseudo-random number generators, with applications to protocol design 24th Annual Symposium on Foundations of Computer Science (sfcs 1983). pp. 23- 30 ,(1983) , 10.1109/SFCS.1983.78
Andrew C Yao, None, Theory and application of trapdoor functions foundations of computer science. pp. 80- 91 ,(1982) , 10.1109/SFCS.1982.95
Deciphering a linear congruential encryption IEEE Transactions on Information Theory. ,vol. 31, pp. 49- 52 ,(1985) , 10.1109/TIT.1985.1056997
James Reeds, “CRACKING” A RANDOM NUMBER GENERATOR Cryptologia. ,vol. 1, pp. 20- 26 ,(1977) , 10.1080/0161-117791832760
Adi Shamir, On the generation of cryptographically strong pseudorandom sequences ACM Transactions on Computer Systems. ,vol. 1, pp. 38- 44 ,(1983) , 10.1145/357353.357357
Manuel Blum, Silvio Micali, How to generate cryptographically strong sequences of pseudo random bits 23rd Annual Symposium on Foundations of Computer Science (sfcs 1982). pp. 112- 117 ,(1982) , 10.1109/SFCS.1982.72
Joan B Plumstead, None, Inferring a sequence generated by a linear congruence 23rd Annual Symposium on Foundations of Computer Science (sfcs 1982). pp. 153- 159 ,(1982) , 10.1109/SFCS.1982.73