Integration of energy-recycling logic and wireless power transfer for ultra-low-power implantables

作者: Hsin-Tzu Lin , Yi-Chung Wu , Ping-Hsuan Hsieh , Chia-Hsiang Yang

DOI: 10.1109/ISCAS.2017.8050378

关键词:

摘要: This paper presents an integration of energy-recycling logic circuits with a wireless power transfer receiving module for ultra-low-power applications, such as transcutaneous biomedical implantables. In the prototype design, one inductive coil implanted inside body receives and supplies following electronics. While part loading is composed conventional CMOS logics, rest implemented circuits. Energy-recycling associated adiabatic operation achieve excellent energy efficiency by transferring recycling between digital blocks along signal propagation. The required AC further lead to natural therefore obviate need rectifier that contributes substantial loss. As proof concept, finite-impulse-response filter designed in 90-nm process. Simulation results show 59.3% reduction compared static counterpart.

参考文章(14)
L.S.Y. Wong, S. Hossain, A. Ta, J. Edvinsson, D.H. Rivas, H. Naas, A very low power CMOS mixed-signal IC for implantable pacemaker applications international solid-state circuits conference. ,vol. 39, pp. 2446- 2456 ,(2004) , 10.1109/JSSC.2004.837027
O. Omeni, C. Toumazou, A CMOS micro-power wideband data/power transfer system for biomedical implants international symposium on circuits and systems. ,vol. 5, pp. 61- 64 ,(2003) , 10.1109/ISCAS.2003.1206184
N. de N. Donaldson, T. A. Perkins, Analysis of resonant coupled coils in the design of radio frequency transcutaneous links. Medical & Biological Engineering & Computing. ,vol. 21, pp. 612- 627 ,(1983) , 10.1007/BF02442388
Joseph Sankman, Dongsheng Ma, A 12-μW to 1.1-mW AIM Piezoelectric Energy Harvester for Time-Varying Vibrations With 450-nA $I_{\bm Q}$ IEEE Transactions on Power Electronics. ,vol. 30, pp. 632- 643 ,(2015) , 10.1109/TPEL.2014.2313738
P.T. Bhatti, Sangwoo Lee, K.D. Wise, A 32-Site 4-Channel Cochlear Electrode Array international solid-state circuits conference. pp. 79- 88 ,(2006) , 10.1109/ISSCC.2006.1696036
Yibin Ye, K. Roy, QSERL: quasi-static energy recovery logic IEEE Journal of Solid-state Circuits. ,vol. 36, pp. 239- 248 ,(2001) , 10.1109/4.902764
Chung-Yu Wu, Xin-Hong Qian, Ming-Seng Cheng, Yu-An Liang, Wei-Ming Chen, None, A 13.56 MHz 40 mW CMOS High-Efficiency Inductive Link Power Supply Utilizing On-Chip Delay-Compensated Voltage Doubler Rectifier and Multiple LDOs for Implantable Medical Devices IEEE Journal of Solid-state Circuits. ,vol. 49, pp. 2397- 2407 ,(2014) , 10.1109/JSSC.2014.2356459
M. Sivaprakasam, Wentai Liu, M.S. Humayun, J.D. Weiland, A variable range bi-phasic current stimulus driver circuitry for an implantable retinal prosthetic device IEEE Journal of Solid-state Circuits. ,vol. 40, pp. 763- 771 ,(2005) , 10.1109/JSSC.2005.843630
Yong Moon, Deog-Kyoon Jeong, An efficient charge recovery logic circuit IEEE Journal of Solid-state Circuits. ,vol. 31, pp. 514- 522 ,(1996) , 10.1109/4.499727
C.M. Zierhofer, E.S. Hochmair, High-efficiency coupling-insensitive transcutaneous power and data transmission via an inductive link IEEE Transactions on Biomedical Engineering. ,vol. 37, pp. 716- 722 ,(1990) , 10.1109/10.55682