Using G Features to Improve the Efficiency of Function Call Graph Based Android Malware Detection

作者: Yu Liu , Liqiang Zhang , Xiangdong Huang

DOI: 10.1007/S11277-018-5982-0

关键词:

摘要: In this paper, we proposed a G features based Android malware detecting scheme with information of Function Call Graph. The experimental results showed that our obtained high performance in up-to-date testing dataset. Besides, the collapsing issue induced by high-dimension vectors traditional Graph detection can also be avoided methods.

参考文章(16)
Te-En Wei, Hsiao-Rong Tyan, Albert B. Jeng, Hahn-Ming Lee, Hong-Yuan Mark Liao, Jiunn-Chin Wang, DroidExec: Root exploit malware recognition against wide variability via folding redundant function-relation graph international conference on advanced communication technology. pp. 161- 169 ,(2015) , 10.1109/ICACT.2015.7224777
Francesco Di Cerbo, Andrea Girardello, Florian Michahelles, Svetlana Voronkova, Detection of malicious applications on Android OS international workshop on computational forensics. pp. 138- 149 ,(2010) , 10.1007/978-3-642-19376-7_12
Iker Burguera, Urko Zurutuza, Simin Nadjm-Tehrani, Crowdroid Proceedings of the 1st ACM workshop on Security and privacy in smartphones and mobile devices - SPSM '11. pp. 15- 26 ,(2011) , 10.1145/2046614.2046619
Anil K. Jain, Data clustering: 50 years beyond K-means international conference on pattern recognition. ,vol. 31, pp. 651- 666 ,(2010) , 10.1016/J.PATREC.2009.09.011
Parvez Faruki, Ammar Bharmal, Vijay Laxmi, Vijay Ganmoor, Manoj Singh Gaur, Mauro Conti, Muttukrishnan Rajarajan, Android Security: A Survey of Issues, Malware Penetration, and Defenses IEEE Communications Surveys and Tutorials. ,vol. 17, pp. 998- 1022 ,(2015) , 10.1109/COMST.2014.2386139
Patrick P. K. Chan, Wen-Kai Song, Static detection of Android malware by using permissions and API calls international conference on machine learning and cybernetics. ,vol. 1, pp. 82- 87 ,(2014) , 10.1109/ICMLC.2014.7009096
Hugo Gascon, Fabian Yamaguchi, Daniel Arp, Konrad Rieck, Structural detection of android malware using embedded call graphs Proceedings of the 2013 ACM workshop on Artificial intelligence and security. pp. 45- 54 ,(2013) , 10.1145/2517312.2517315
Lin Rongheng, Wu Budan, Yang Fangchun, Zhao Yao, Hou Jinxuan, An efficient adaptive failure detection mechanism for cloud platform based on volterra series China Communications. ,vol. 11, pp. 1- 12 ,(2014) , 10.1109/CC.2014.6827564
You Joung Ham, Daeyeol Moon, Hyung-Woo Lee, Jae Deok Lim, Jeong Nyeo Kim, Android Mobile Application System Call Event Pattern Analysis for Determination of Malicious Attack International journal of security and its applications. ,vol. 8, pp. 231- 246 ,(2014) , 10.14257/IJSIA.2014.8.1.22
Yajin Zhou, Xuxian Jiang, Dissecting Android Malware: Characterization and Evolution ieee symposium on security and privacy. pp. 95- 109 ,(2012) , 10.1109/SP.2012.16