Estimating the DINA model parameters using the No-U-Turn Sampler.

作者: Marcelo A da Silva , Eduardo SB de Oliveira , Alina A von Davier , Jorge L. Bazán , None

DOI: 10.1002/BIMJ.201600225

关键词:

摘要: The deterministic inputs, noisy, "and" gate (DINA) model is a popular cognitive diagnosis (CDM) in psychology and psychometrics used to identify test takers' profiles with respect set of latent attributes or skills. In this work, we propose an estimation method for the DINA No-U-Turn Sampler (NUTS) algorithm, extension Hamiltonian Monte Carlo (HMC) method. We conduct simulation study order evaluate parameter recovery efficiency new Markov chain compare it two other Bayesian methods, Metropolis Hastings Gibbs sampling algorithms, frequentist method, using Expectation-Maximization (EM) algorithm. results indicated that NUTS algorithm employed properly recovers all parameters accurate simulated scenarios. apply methodology mental health area develop classification respondents Beck Depression Inventory. implementation applied psychological tests has potential improve medical diagnostic process.

参考文章(37)
David J. Lunn, Andrew Thomas, Nicky Best, David Spiegelhalter, WinBUGS – A Bayesian modelling framework: Concepts, structure, and extensibility Statistics and Computing. ,vol. 10, pp. 325- 337 ,(2000) , 10.1023/A:1008929526011
Mark Girolami, Ben Calderhead, Riemann manifold Langevin and Hamiltonian Monte Carlo methods Journal of The Royal Statistical Society Series B-statistical Methodology. ,vol. 73, pp. 123- 214 ,(2011) , 10.1111/J.1467-9868.2010.00765.X
Hung-Yu Huang, Wen-Chung Wang, The Random‐Effect DINA Model Journal of Educational Measurement. ,vol. 51, pp. 75- 97 ,(2014) , 10.1111/JEDM.12035
Jimmy de la Torre, L. Andries van der Ark, Gina Rossi, Analysis of Clinical Data From Cognitive Diagnosis Modeling Framework Measurement and Evaluation in Counseling and Development. ,vol. 51, pp. 0748175615569110- ,(2015) , 10.1177/0748175615569110
Radford M. Neal, An improved acceptance procedure for the hybrid Monte Carlo algorithm Journal of Computational Physics. ,vol. 111, pp. 194- 203 ,(1994) , 10.1006/JCPH.1994.1054
Jonathan L. Templin, Robert A. Henson, Measurement of psychological disorders using cognitive diagnosis models. Psychological Methods. ,vol. 11, pp. 287- 305 ,(2006) , 10.1037/1082-989X.11.3.287
Bruce Bloxom, Peter J. Pashley, W. Alan Nicewander, Duanli Yan, Linking to a Large-Scale Assessment: An Empirical Evaluation Journal of Educational and Behavioral Statistics. ,vol. 20, pp. 1- 26 ,(1995) , 10.3102/10769986020001001
Matthias Davier, A general diagnostic model applied to language testing data British Journal of Mathematical and Statistical Psychology. ,vol. 61, pp. 287- 307 ,(2008) , 10.1348/000711007X193957
Stuart Geman, Donald Geman, Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images IEEE Transactions on Pattern Analysis and Machine Intelligence. ,vol. PAMI-6, pp. 721- 741 ,(1984) , 10.1109/TPAMI.1984.4767596