Using Rough Sets with Heuristics for Feature Selection

作者: Juzhen Dong , Ning Zhong , Setsuo Ohsuga

DOI: 10.1007/978-3-540-48061-7_22

关键词:

摘要: … which is using rough set theory with greedy heuristics for feature selection. Selecting features is similar … That is, we select the features that do not damage the performance of induction. …

参考文章(10)
Ron Kohavi, Brian Frasca, Useful Feature Subsets and Rough Set Reducts ,(1994)
Moussa Boussouf, A Hybrid Approach to Feature Selection european conference on principles of data mining and knowledge discovery. pp. 230- 238 ,(1998) , 10.1007/BFB0094824
Ning Zhong, Juzhen Dong, Setsuo Ohsuga, Data Mining Based on the Generalization Distribution Table and Rough Sets knowledge discovery and data mining. pp. 360- 373 ,(1998) , 10.1007/3-540-64383-4_30
Andrzej Skowron, Cecylia Rauszer, The Discernibility Matrices and Functions in Information Systems Intelligent Decision Support. pp. 331- 362 ,(1992) , 10.1007/978-94-015-7975-9_21
Andrzej Skowron, Lech Polkowski, Synthesis of Decision Systems from Data Tables Springer, Boston, MA. pp. 259- 299 ,(1997) , 10.1007/978-1-4613-1461-5_14
Juzhen Dong, Ning Zhong, Setsuo Ohsuga, Probabilistic Rough Induction: The GDT-RS Methodology and Algorithms international syposium on methodologies for intelligent systems. pp. 621- 629 ,(1999) , 10.1007/BFB0095151
B. Zupan, M. Bohanec, J. Demsar, I. Bratko, Feature transformation by function decomposition IEEE Intelligent Systems & Their Applications. ,vol. 13, pp. 38- 43 ,(1998) , 10.1109/5254.671090
John E. Hopcroft, Jeffrey Ullman, Alfred V. Aho, Data Structures and Algorithms ,(1983)