Approximation theory concepts of smoothness are of global nature

作者: J. M. Almira

DOI:

关键词:

摘要: The main goal of this note is to prove that, in general, the smoothness concepts derived from membership an approximation space, are global nature. To claim we show that if (C[a,b],{An}) scheme and (An) satisfies de La Vallee-Poussin Theorem, there very smooth functions (in classical sense) failing assumption just at one extreme point interval [a,b] but being continuous on such their sequence best uniform errors {E(f,An)} decays as slow want. We also a similar result holds true for multidimensional case.

参考文章(6)
Manfred von Golitschek, Yuly Makovoz, George G. Lorentz, Constructive approximation : advanced problems Springer-Verlag. ,(1996)
Harold R. Parks, Steven G. Krantz, A Primer of Real Analytic Functions ,(1992)
Jose Maria Almira, Uwe Luther, Generalized approximation spaces and applications Mathematische Nachrichten. ,vol. 263, pp. 3- 35 ,(2004) , 10.1002/MANA.200310121
J.M. Almira, U. Luther, Inverse closedness of approximation algebras Journal of Mathematical Analysis and Applications. ,vol. 314, pp. 30- 44 ,(2006) , 10.1016/J.JMAA.2005.03.067
Serge Bernstein, Sur l'ordre de la meilleure approximation des fonctions continues par des polynomes de degré donné Published in <b>1911</b> in Bruxelles by Lamertin. ,(1911)