Two-Level Method Based on Finite Element and Crank--Nicolson Extrapolation for the Time-Dependent Navier--Stokes Equations

作者: Yinnian He

DOI: 10.1137/S0036142901385659

关键词:

摘要: A fully discrete two-level finite element method (the method) is presented for solving the two-dimensional time-dependent Navier--Stokes problem. The requires a Crank--Nicolson extrapolation solution $(u_{H,\tau_0},p_{H,\tau_0})$ on spatial-time coarse grid $J_{H,\tau_0}$ and backward Euler $(u^{h,\tau},p^{h,\tau})$ space-time fine $J_{h,\tau}$. error estimates of optimal order are derived. Compared with standard one-level based $J_{h,\tau}$, same as in H1-norm velocity L2-norm pressure. However, involves much less work than method.

参考文章(32)
J.-L. Lions, V. Girault, Two-grid finite-element schemes for the steady Navier-Stokes problem in polyhedra. Portugaliae Mathematica. Nova Série. ,vol. 58, pp. 25- 57 ,(2001)
Maxim A. Olshanskii, Two-level method and some a priori estimates in unsteady Navier—Stokes calculations Journal of Computational and Applied Mathematics. ,vol. 104, pp. 173- 191 ,(1999) , 10.1016/S0377-0427(99)00056-4
Ali Ait Ou Ammi, Martine Marion, Nonlinear Galerkin methods and mixed finite elements:two-grid algorithms for the Navier-Stokes equations Numerische Mathematik. ,vol. 68, pp. 189- 213 ,(1994) , 10.1007/S002110050056
Stig Larsson, The long-time behavior of finite-element approximations of solutions of semilinear parabolic problems SIAM Journal on Numerical Analysis. ,vol. 26, pp. 348- 365 ,(1989) , 10.1137/0726019
Jinchao Xu, Two-grid Discretization Techniques for Linear and Nonlinear PDEs SIAM Journal on Numerical Analysis. ,vol. 33, pp. 1759- 1777 ,(1996) , 10.1137/S0036142992232949
Adrian T Hill, Endre Süli, Approximation of the global attractor for the incompressible Navier–Stokes equations Ima Journal of Numerical Analysis. ,vol. 20, pp. 633- 667 ,(2000) , 10.1093/IMANUM/20.4.633
R.B Kellogg, J.E Osborn, A regularity result for the Stokes problem in a convex polygon Journal of Functional Analysis. ,vol. 21, pp. 397- 431 ,(1976) , 10.1016/0022-1236(76)90035-5