Patch Alignment for Graph Embedding

作者: Yong Luo , Dacheng Tao , Chao Xu

DOI: 10.1007/978-1-4614-4457-2_4

关键词:

摘要: Dozens of manifold learning-based dimensionality reduction algorithms have been proposed in the literature. The most representative ones are locally linear embedding (LLE) [65], ISOMAP [76], Laplacian eigenmaps (LE) [4], Hessian (HLLE) [20], and local tangent space alignment (LTSA) [102]. LLE uses coefficients, which reconstruct a given example by its neighbors, to represent geometry, then seeks low-dimensional embedding, these coefficients still suitable for reconstruction. preserves global geodesic distances all pairs examples.

参考文章(109)
Simon Tong, Cheng-Wei Chang, Edward Y. Chang, Support Vector Machine Concept-Dependent Active Learning for Image Retrieval ,(2005)
Fei Wang, Xin Wang, Letters: Neighborhood discriminant tensor mapping Neurocomputing. ,vol. 72, pp. 2035- 2039 ,(2009) , 10.1016/J.NEUCOM.2008.11.014
Philip S. Yu, Zhongfei (Mark) Zhang, Bo Long, A general model for multiple view unsupervised learning siam international conference on data mining. pp. 822- 833 ,(2008)
Shuiwang Ji, Jieping Ye, Linear dimensionality reduction for multi-label classification international joint conference on artificial intelligence. pp. 1077- 1082 ,(2009)
Zhihong Zhang, Edwin R. Hancock, Localized Graph-Based Feature Selection for Clustering Lecture Notes in Computer Science. pp. 1- 10 ,(2012) , 10.1007/978-3-642-31295-3_1
A N Tikhonov, REGULARIZATION OF INCORRECTLY POSED PROBLEMS SOVIET MATHEMATICS DOKLADY. ,vol. 4, pp. 1624- 1627 ,(1963)
Jiawei Han, Deng Cai, Xiaofei He, Using Graph Model for Face Analysis ,(2005)
Pietro Perona, Gregory Griffin, Alex Holub, Caltech-256 Object Category Dataset California Institute of Technology. ,(2007)
Richard C. Wilson, Edwin R. Hancock, Spherical Embedding and Classification Lecture Notes in Computer Science. pp. 589- 599 ,(2010) , 10.1007/978-3-642-14980-1_58