Endmember Extraction From Highly Mixed Data Using Minimum Volume Constrained Nonnegative Matrix Factorization

作者: Lidan Miao , Hairong Qi

DOI: 10.1109/TGRS.2006.888466

关键词:

摘要: … constrained nonnegative matrix factorization (MVC-NMF), for unsupervised endmember … We use the VCA estimates as the starting points for the MVC-NMF learning. The extracted …

参考文章(33)
R. Plemmons, Stefania Ragni, M. T. Chu, F. Diele, Optimality, computation, and interpretation of nonnegative matrix factorizations pp. 1- 18 ,(2004)
Giles M. Foody, Sub-pixel methods in remote sensing Springer Netherlands. pp. 37- 49 ,(2004) , 10.1007/978-1-4020-2560-0_3
Freek D. Van der Meer, Steven M. De Jong, Remote Sensing Image Analysis: Including The Spatial Domain ,(2011)
Steve Sutley, Roger N. Clark, Andrea Gallagher, Fred Kruse, Gregg Swayze, Ground-truthing AVIRIS mineral mapping at Cuprite, Nevada ,(1992)
Roger N. Clark, Gregg A. Swayze, Andrea J. Gallagher, Trude V.V. King, Wendy M. Calvin, The U. S. Geological Survey, Digital Spectral Library: Version 1 (0.2 to 3.0um) Open-File Report. ,(1993) , 10.3133/OFR93592
Joseph W. Boardman, Fred A. Kruse, Robert O. Green, Mapping target signatures via partial unmixing of AVIRIS data ,(1995)
Daniel D. Lee, H. Sebastian Seung, Learning the parts of objects by non-negative matrix factorization Nature. ,vol. 401, pp. 788- 791 ,(1999) , 10.1038/44565