Evolution of reaction-diffusion patterns in infinite and bounded domains

作者: S.A. Hassan , M.N. Kuperman , H.S. Wio , D.H. Zanette

DOI: 10.1016/0378-4371(94)90313-1

关键词:

摘要: Abstract We introduce a semi-analytical method to study the evolution of spatial structures in reaction-diffusion systems. It consists writing an integral equation for relevant densities, from propagator linear part operator. In order test method, we perform exhaustive one-dimensional model associated electrical device - ballast resistor. consider step and bubble-shaped initial density profiles free space as well semi-infinite domain with Dirichlet Neumann boundary conditions. The piecewise-linear form reaction term, which preserves basic ingredients more complex nonlinear models, makes it possible obtain exact wave-front solutions stationary bounded domain. Short long-time behaviour can also be analytically studied, whereas at intermediate times is analyzed by numerical techniques. paid particular attention features introduced

参考文章(28)
F. Schlögl, On thermodynamics near a steady state Zeitschrift für Physik A Hadrons and nuclei. ,vol. 248, pp. 446- 458 ,(1971) , 10.1007/BF01395694
F. Schl�gl, Chemical reaction models for non-equilibrium phase transitions European Physical Journal. ,vol. 253, pp. 147- 161 ,(1972) , 10.1007/BF01379769
P. C. Hohenberg, M. C. Cross, An introduction to pattern formation in nonequilibrium systems Fluctuations and Stochastic Phenomena in Condensed Matter. ,vol. 268, pp. 55- 92 ,(1987) , 10.1007/3-540-17206-8_3
J. D. Dockery, J. P. Keener, Diffusive effects on dispersion in excitable media Siam Journal on Applied Mathematics. ,vol. 49, pp. 539- 566 ,(1989) , 10.1137/0149031
Ehud Meron, Pattern formation in excitable media Physics Reports. ,vol. 218, pp. 1- 66 ,(1992) , 10.1016/0370-1573(92)90098-K
M Niklas, M Lücke, H Müller-Krumbhaar, Propagating front of a propagating pattern: influence of group velocity EPL. ,vol. 9, pp. 237- 242 ,(1989) , 10.1209/0295-5075/9/3/009
Patrick S. Hagan, Traveling Wave and Multiple Traveling Wave Solutions of Parabolic Equations SIAM Journal on Mathematical Analysis. ,vol. 13, pp. 717- 738 ,(1982) , 10.1137/0513049
M. C. Cross, Traveling and standing waves in binary-fluid convection in finite geometries. Physical Review Letters. ,vol. 57, pp. 2935- 2938 ,(1986) , 10.1103/PHYSREVLETT.57.2935
Ch. Zülicke, A.S. Mikhailov, L. Schimansky-geier, Dynamic bistability of front propagation and stable localized domains in systems with first-order phase transition Physica A: Statistical Mechanics and its Applications. ,vol. 163, pp. 559- 583 ,(1990) , 10.1016/0378-4371(90)90145-I
H. Yamada, K. Nozaki, Interaction of pulses in dissipative systems―FitzHugh-Nagumo equations Progress of Theoretical Physics. ,vol. 84, pp. 801- 809 ,(1990) , 10.1143/PTP/84.5.801