The spherical harmonic expansion coefficients and multidimensional integrals in theories of liquids

作者: I. Nezbeda , J. Kolafa , S. Labík

DOI: 10.1007/BF01597437

关键词:

摘要: The Conroy integration method is re-considered and new sets of parameters are provided which permit to use as much 150 000 sample points for twelve-fold integrals. applied various functions important in theories liquids compared with the approach based on spherical harmonic expansion where it possible.

参考文章(10)
Keith E. Gubbins, C.G. Joslin, C. G. Gray, Theory of molecular fluids Clarendon Press. ,(1984)
Stanislav Labik, Ivo Nezbeda, William R. Smith, The site-site pair correlation functions of molecular fluids Molecular Physics. ,vol. 52, pp. 815- 825 ,(1984) , 10.1080/00268978400101581
F. Lado, Integral equations for fluids of linear molecules Molecular Physics. ,vol. 47, pp. 283- 298 ,(1982) , 10.1080/00268978200100202
Ivo Nezbeda, Horst L. Vörtler, MC simulation results for a hard core model of carbon tetrachloride Molecular Physics. ,vol. 57, pp. 909- 918 ,(1986) , 10.1080/00268978600100651
Harold Conroy, Molecular Schrödinger Equation. VIII. A New Method for the Evaluation of Multidimensional Integrals The Journal of Chemical Physics. ,vol. 47, pp. 5307- 5318 ,(1967) , 10.1063/1.1701795
William R. Smith, Ivo Nezbeda, Stanislav Labik, A simple pseudomolecular fluid model. Exact and approximate structural properties The Journal of Chemical Physics. ,vol. 80, pp. 5219- 5229 ,(1984) , 10.1063/1.446592
G. Baskaran, Yaotian Fu, P. W. Anderson, On the Statistical Mechanics of the Traveling Salesman Problem Journal of Statistical Physics. ,vol. 45, pp. 1- 25 ,(1986) , 10.1007/BF01033073
C. B. Haselgrove, A method for numerical integration Mathematics of Computation. ,vol. 15, pp. 323- 337 ,(1961) , 10.1090/S0025-5718-1961-0146960-1
Francis H. Ree, William G. Hoover, Fifth and Sixth Virial Coefficients for Hard Spheres and Hard Disks The Journal of Chemical Physics. ,vol. 40, pp. 939- 950 ,(1964) , 10.1063/1.1725286