Stokes Resolvent Estimates in Spaces of Bounded Functions

作者: Ken Abe , Yoshikazu Giga , Matthias Hieber

DOI: 10.24033/ASENS.2251

关键词:

摘要: We give a direct proof for the analyticity of Stokes semigroup in spaces bounded functions. This was recently proved by an indirect argument first and second authors class domains called strictly admissible including exterior domains. Invoking admissibility, our approach is based on adjustment standard resolvent estimate method general elliptic operators introduced K. Masuda (1972) H. B. Stewart (1974). The particular clarifies sectorial region, Re z > 0 ∈ C which has analytic continuation

参考文章(29)
Hermann Sohr, The Navier-Stokes equations ,(2001)
Reinhard Farwig, Hermann Sohr, An approach to resolvent estimates for the stokes equations in L q -spaces The Navier-Stokes Equations II — Theory and Numerical Methods. pp. 97- 110 ,(1992) , 10.1007/BFB0090336
Harold R. Parks, Steven George Krantz, The Implicit Function Theorem ,(2002)
Reinhard FARWIG, Hideo KOZONO, Hermann SOHR, On the Stokes operator in general unbounded domains Hokkaido Mathematical Journal. ,vol. 38, pp. 111- 136 ,(2009) , 10.14492/HOKMJ/1248787007
Helmut Abels, , Nonstationary Stokes System with Variable Viscosity in Bounded and Unbounded Domains Discrete and Continuous Dynamical Systems - Series S. ,vol. 3, pp. 141- 157 ,(2010) , 10.3934/DCDSS.2010.3.141
Reinhard Farwig, Hideo Kozono, Hermann Sohr, On the Helmholtz decomposition in general unbounded domains Archiv der Mathematik. ,vol. 88, pp. 239- 248 ,(2007) , 10.1007/S00013-006-1910-8
Frank Neubrander, Wolfgang Arendt, Charles J. K. Batty, Matthias Hieber, Vector-Valued Laplace Transforms and Cauchy Problems ,(2002)
Wolfgang Desch, Matthias Hieber, Jan Prüss, $ L^p $-Theory of the Stokes equation in a half space Journal of Evolution Equations. ,vol. 1, pp. 115- 142 ,(2001) , 10.1007/PL00001362
Eugenio Sinestrari, On the abstract Cauchy problem of parabolic type in spaces of continuous functions Journal of Mathematical Analysis and Applications. ,vol. 107, pp. 16- 66 ,(1985) , 10.1016/0022-247X(85)90353-1