Monitoring Health of Large Scale Software Systems Using Drift Detection Techniques

作者: L. H. C. Prabodha , W. R. R. Vithanage , L. T. Ranaweera , D. M. M. A. I. B. Dissanayake , S. Ranathunga

DOI: 10.1007/978-3-319-61566-0_14

关键词:

摘要: Anomaly detection in large-scale software systems is important to guarantee smooth operation of the system. Upon an anomaly, it vital identify root cause behind anomaly decipher actionable information and prevent future incidents. Isolation causes becomes inherently difficult as number components parameters each component increase. This paper discusses successful application three drift techniques, namely meta algorithm, fixed cumulative window model Page-Hinckley test that correlate system abnormalities a large scale complex Out these, change algorithm produced best result.

参考文章(18)
M. Hall, Correlation-based Feature Selection for Machine Learning PhD Thesis, Waikato Univer-sity. ,(1998)
Raquel Sebastião, João Gama, Change detection in learning histograms from data streams portuguese conference on artificial intelligence. pp. 112- 123 ,(2007) , 10.5555/1782254.1782265
Raquel Sebastião, João Gama, Pedro Pereira Rodrigues, João Bernardes, Monitoring incremental histogram distribution for change detection in data streams knowledge discovery and data mining. ,vol. 5840, pp. 25- 42 ,(2008) , 10.1007/978-3-642-12519-5_2
Marin Litoiu, Gabriel Iszlai, Murray Woodside, Jinmei Yang, Tao Zheng, Tracking time-varying parameters in software systems with extended Kalman filters conference of the centre for advanced studies on collaborative research. pp. 334- 345 ,(2005)
João Gama, Pedro Medas, Gladys Castillo, Pedro Rodrigues, Learning with Drift Detection Advances in Artificial Intelligence – SBIA 2004. pp. 286- 295 ,(2004) , 10.1007/978-3-540-28645-5_29
Carlos Sáez, Pedro Pereira Rodrigues, João Gama, Montserrat Robles, Juan M García-Gómez, None, Probabilistic change detection and visualization methods for the assessment of temporal stability in biomedical data quality Data Mining and Knowledge Discovery. ,vol. 29, pp. 950- 975 ,(2015) , 10.1007/S10618-014-0378-6
Geoff Hulten, Laurie Spencer, Pedro Domingos, Mining time-changing data streams knowledge discovery and data mining. pp. 97- 106 ,(2001) , 10.1145/502512.502529
E. S. PAGE, CONTINUOUS INSPECTION SCHEMES Biometrika. ,vol. 41, pp. 100- 115 ,(1954) , 10.1093/BIOMET/41.1-2.100
Pedro Domingos, Geoff Hulten, Mining high-speed data streams knowledge discovery and data mining. pp. 71- 80 ,(2000) , 10.1145/347090.347107
João Gama, Indrė Žliobaitė, Albert Bifet, Mykola Pechenizkiy, Abdelhamid Bouchachia, A survey on concept drift adaptation ACM Computing Surveys. ,vol. 46, pp. 44- ,(2014) , 10.1145/2523813