Pericyte actomyosin-mediated contraction at the cell–material interface can modulate the microvascular niche

作者: Sunyoung Lee , Adam Zeiger , John M Maloney , Maciej Kotecki , Krystyn J Van Vliet

DOI: 10.1088/0953-8984/22/19/194115

关键词:

摘要: Pericytes physically surround the capillary endothelium, contacting and communicating with associated vascular endothelial cells via cell?cell cell?matrix contacts. Pericyte?endothelial cell interactions thus have potential to modulate growth function of microvasculature. Here we employ experimental finding that pericytes can buckle a freestanding, underlying membrane actin-mediated contraction. were cultured on deformable silicone substrata, pericyte-generated wrinkles imaged both optical atomic force microscopy (AFM). The local stiffness subcellular domains near far from these was investigated by using AFM-enabled nanoindentation quantify effective elastic moduli. Substratum buckling contraction quantified normalized change in length initially flat regions substrata (corresponding wrinkle contour lengths), model used relate strain energies pericyte contractile forces. nature wrinkling protein-generated transduction further explored addition pharmacological cytoskeletal inhibitors affected forces moduli domains. Actin-mediated are sufficient for exert an average 38% elastomeric employed in?vitro studies. Actomyosin-mediated also act in?vivo compliant environment microvasculature, including basement other cells. Pericyte-generated substratum deformation serve as direct mechanical stimulus adjacent cells, potentially alter nonlinear extracellular matrices, pericyte?endothelial directly influence physiologic pathologic angiogenesis.

参考文章(46)
A. Shukla, A.R. Dunn, M.A. Moses, K.J. Van Vliet, Endothelial cells as mechanical transducers: Enzymatic activity and network formation under cyclic strain Mechanics & chemistry of biosystems : MCB. ,vol. 1, pp. 279- 290 ,(2004) , 10.3970/MCB.2004.001.279
M Saitoh, T Ishikawa, S Matsushima, M Naka, H Hidaka, Selective inhibition of catalytic activity of smooth muscle myosin light chain kinase. Journal of Biological Chemistry. ,vol. 262, pp. 7796- 7801 ,(1987) , 10.1016/S0021-9258(18)47638-7
M. Todd Thompson, Michael C. Berg, Irene S. Tobias, Jenny A. Lichter, Michael F. Rubner, Krystyn J. Van Vliet, Biochemical functionalization of polymeric cell substrata can alter mechanical compliance. Biomacromolecules. ,vol. 7, pp. 1990- 1995 ,(2006) , 10.1021/BM060146B
Kevin Burton, D. Lansing Taylor, Traction forces of cytokinesis measured with optically modified elastic substrata Nature. ,vol. 385, pp. 450- 454 ,(1997) , 10.1038/385450A0
H -J Butt, M Jaschke, Calculation of thermal noise in atomic force microscopy Nanotechnology. ,vol. 6, pp. 1- 7 ,(1995) , 10.1088/0957-4484/6/1/001
Rita Rosenthal, Lars Choritz, Sebastian Schlott, Nikolaos E. Bechrakis, Jan Jaroszewski, Michael Wiederholt, Hagen Thieme, Effects of ML-7 and Y-27632 on carbachol- and endothelin-1-induced contraction of bovine trabecular meshwork. Experimental Eye Research. ,vol. 80, pp. 837- 845 ,(2005) , 10.1016/J.EXER.2004.12.013
Alison Grazioli, Christina S. Alves, Konstantinos Konstantopoulos, Joy T. Yang, Defective blood vessel development and pericyte/pvSMC distribution in α4 integrin -deficient mouse embryos Developmental Biology. ,vol. 293, pp. 165- 177 ,(2006) , 10.1016/J.YDBIO.2006.01.026
Ralf H. Adams, Kari Alitalo, Molecular regulation of angiogenesis and lymphangiogenesis Nature Reviews Molecular Cell Biology. ,vol. 8, pp. 464- 478 ,(2007) , 10.1038/NRM2183
R. Shlomovitz, N. S. Gov, Membrane waves driven by actin and Myosin. Physical Review Letters. ,vol. 98, pp. 168103- ,(2007) , 10.1103/PHYSREVLETT.98.168103
A. Harris, P Wild, D Stopak, Silicone rubber substrata: a new wrinkle in the study of cell locomotion Science. ,vol. 208, pp. 177- 179 ,(1980) , 10.1126/SCIENCE.6987736