The size of infinite dimensional representations

作者: David A. Vogan

DOI: 10.1007/BFB0090118

关键词:

摘要: An infinite-dimensional representation π of a real reductive Lie group G can often be thought as function space on some manifold X. Although X is not uniquely defined by π, there are “geometric invariants” first introduced Roger Howe in the 1970s, related to geometry These invariants easy define but difficult compute. I will describe invariants, and recent progress toward computing them.

参考文章(21)
Michel Duflo, Polynomes de Vogan pour SL(n, ℂ) Non-Commutative Harmonic Analysis. pp. 64- 76 ,(1979) , 10.1007/BFB0063338
Neil Chriss, Victor Ginzburg, Representation theory and complex geometry ,(1997)
Sigurdur Helgason, Groups and geometric analysis ,(1984)
Roger Howe, Wave Front Sets of Representations of Lie Groups Springer, Berlin, Heidelberg. pp. 117- 140 ,(1981) , 10.1007/978-3-662-00734-1_3
Pramod N. Achar, On the equivariant K-theory of the nilpotent cone in the general linear group Representation Theory of The American Mathematical Society. ,vol. 8, pp. 180- 211 ,(2004) , 10.1090/S1088-4165-04-00243-2
Jiro SEKIGUCHI, Remarks on real nilpotent orbits of a symmetric pair Journal of The Mathematical Society of Japan. ,vol. 39, pp. 127- 138 ,(1987) , 10.2969/JMSJ/03910127
B. Kostant, S. Rallis, Orbits and Representations Associated with Symmetric Spaces American Journal of Mathematics. ,vol. 93, pp. 753- ,(1971) , 10.2307/2373470
William M. McGovern, Rings of regular functions on nilpotent orbits and their covers Inventiones Mathematicae. ,vol. 97, pp. 209- 217 ,(1989) , 10.1007/BF01850661