State Estimation in Nonlinear Model Predictive Control, Unscented Kalman Filter Advantages

作者: Giancarlo Marafioti , Sorin Olaru , Morten Hovd

DOI: 10.1007/978-3-642-01094-1_25

关键词:

摘要: Model predictive control (NMPC) proves to be a suitable technique for controlling nonlinear systems, moreover the simplicity of including constraints in its formulation makes it very attractive large class applications. Due heavy online computational requirements, NMPC has traditionally been applied mostly systems with slow dynamics. Recent developments is likely expand NMPCs applicability faster

参考文章(10)
Rolf Findeisen, Frank Allgöwer, An Introduction to Nonlinear Model Predictive Control ,(2002)
Jan Marian Maciejowski, Predictive Control With Constraints ,(2001)
Simon S. Haykin, Kalman Filtering and Neural Networks ,(2001)
E.A. Wan, R. Van Der Merwe, The unscented Kalman filter for nonlinear estimation Proceedings of the IEEE 2000 Adaptive Systems for Signal Processing, Communications, and Control Symposium (Cat. No.00EX373). pp. 0- 0 ,(2000) , 10.1109/ASSPCC.2000.882463
D.Q. Mayne, J.B. Rawlings, C.V. Rao, P.O.M. Scokaert, Survey Constrained model predictive control: Stability and optimality Automatica. ,vol. 36, pp. 789- 814 ,(2000) , 10.1016/S0005-1098(99)00214-9
Rolf Findeisen, Lars Imsland, Frank Allgower, Bjarne A. Foss, State and output feedback nonlinear model predictive control: An overview European Journal of Control. ,vol. 9, pp. 190- 206 ,(2003) , 10.3166/EJC.9.190-206
Tamer Basar, A New Approach to Linear Filtering and Prediction Problems Journal of Basic Engineering. ,vol. 82, pp. 35- 45 ,(1960) , 10.1115/1.3662552
S.Joe Qin, Thomas A. Badgwell, A survey of industrial model predictive control technology Control Engineering Practice. ,vol. 11, pp. 733- 764 ,(2003) , 10.1016/S0967-0661(02)00186-7
R. Hermann, A. Krener, Nonlinear controllability and observability IEEE Transactions on Automatic Control. ,vol. 22, pp. 728- 740 ,(1977) , 10.1109/TAC.1977.1101601
Gildas Besançon, A viewpoint on observability and observer design for nonlinear systems Lecture Notes in Control and Information Sciences. pp. 3- 22 ,(1999) , 10.1007/BFB0109918