EEG based foot movement onset detection with the probabilistic classification vector machine

作者: Raheleh Mohammadi , Ali Mahloojifar , Huanhuan Chen , Damien Coyle

DOI: 10.1007/978-3-642-34478-7_44

关键词:

摘要: A critical issue in designing a self-paced brain computer interface (BCI) system is onset detection of the mental task from continuous electroencephalogram (EEG) signal to produce switch. This work shows significant improvement movement based BCI by applying new sparse learning classification algorithm, probabilistic vector machines (PCVMs) classify EEG signal. Constant-Q filters instead constant bandwidth for frequency decomposition are also shown enhance discrimination related patterns associated with idle state. Analysis data recorded seven subjects executing foot using constant-Q and PCVMs statistically 17% (p<0.03) average true positive rate (TPR) 2% reduction false (FPR) compared SVM classifier.

参考文章(14)
Michael E Tipping, Sparse bayesian learning and the relevance vector machine Journal of Machine Learning Research. ,vol. 1, pp. 211- 244 ,(2001) , 10.1162/15324430152748236
Huanhuan Chen, P. Tino, Xin Yao, Probabilistic Classification Vector Machines IEEE Transactions on Neural Networks. ,vol. 20, pp. 901- 914 ,(2009) , 10.1109/TNN.2009.2014161
Bashar Awwad Shiekh Hasan, John Q. Gan, Unsupervised movement onset detection from EEG recorded during self-paced real hand movement. Medical & Biological Engineering & Computing. ,vol. 48, pp. 245- 253 ,(2010) , 10.1007/S11517-009-0550-0
Reinhold Scherer, Alois Schloegl, Felix Lee, Horst Bischof, Janez Janša, Gert Pfurtscheller, The self-paced Graz brain-computer interface: methods and applications Computational Intelligence and Neuroscience. ,vol. 2007, pp. 9- 9 ,(2007) , 10.1155/2007/79826
M Fatourechi, R K Ward, G E Birch, A self-paced brain-computer interface system with a low false positive rate. Journal of Neural Engineering. ,vol. 5, pp. 9- 23 ,(2008) , 10.1088/1741-2560/5/1/002
Ferran Galán, Francesc Oliva, Joan Guàrdia, Using mental tasks transitions detection to improve spontaneous mental activity classification. Medical & Biological Engineering & Computing. ,vol. 45, pp. 603- 609 ,(2007) , 10.1007/S11517-007-0197-7
S.G. Mason, G.E. Birch, A brain-controlled switch for asynchronous control applications IEEE Transactions on Biomedical Engineering. ,vol. 47, pp. 1297- 1307 ,(2000) , 10.1109/10.871402
Tao Wang, Jie Deng, Bin He, Classifying EEG-based motor imagery tasks by means of time–frequency synthesized spatial patterns Clinical Neurophysiology. ,vol. 115, pp. 2744- 2753 ,(2004) , 10.1016/J.CLINPH.2004.06.022
G. Pfurtscheller, F.H. Lopes da Silva, Event-related EEG/MEG synchronization and desynchronization: basic principles. Clinical Neurophysiology. ,vol. 110, pp. 1842- 1857 ,(1999) , 10.1016/S1388-2457(99)00141-8
G. Pfurtscheller, T. Solis-Escalante, Could the beta rebound in the EEG be suitable to realize a “brain switch”? Clinical Neurophysiology. ,vol. 120, pp. 24- 29 ,(2009) , 10.1016/J.CLINPH.2008.09.027