Instantons via breaking geometric symmetry in hyperbolic traps

作者: M. Karasev , E. Novikova , E. Vybornyi

DOI: 10.1134/S0001434617110177

关键词:

摘要: Using geometrical and algebraic ideas, we study tunnel eigenvalue asymptotics bilocalization of eigenstates for certain class operators (quantum Hamiltonians) including the case Penning traps, well known in physical literature. For general hyperbolic traps with geometric asymmetry, resonance regimes which produce type algebras integrals motion. Such have polynomial (non-Lie) commutation relations creation-annihilation structure. Over this algebra, trap asymmetry (higher-order anharmonic terms near equilibrium) determines a pendulum-like Hamiltonian action-angle coordinates. The symmetry breaking term generates tunneling pseudoparticle (closed instanton). We instanton action corresponding spectral splitting.

参考文章(33)
S. Yu. Dobrokhotov, A. I. Shafarevich, “Momentum” Tunneling between Tori and the Splitting of Eigenvalues of the Laplace–Beltrami Operator on Liouville Surfaces Mathematical Physics Analysis and Geometry. ,vol. 2, pp. 141- 177 ,(1999) , 10.1023/A:1009869622526
Jérémy Le Deunff, Amaury Mouchet, Instantons re-examined: Dynamical tunneling and resonant tunneling Physical Review E. ,vol. 81, pp. 046205- 046205 ,(2010) , 10.1103/PHYSREVE.81.046205
Jeffrey S. Geronimo, Oscar Bruno, Walter Van Assche, WKB and turning point theory for second-order difference equations Operator Theory: Advances and Applications. ,vol. 154, pp. 101- 138 ,(2004) , 10.1007/978-3-0348-7947-7_7
Mohsen Razavy, Quantum Theory of Tunneling ,(2003)
Anupam Garg, Application of the discrete Wentzel–Kramers–Brillouin method to spin tunneling Journal of Mathematical Physics. ,vol. 39, pp. 5166- 5179 ,(1998) , 10.1063/1.532563
S. Stahl, F. Galve, J. Alonso, S. Djekic, W. Quint, T. Valenzuela, J. Verd�, M. Vogel, G. Werth, A planar Penning trap European Physical Journal D. ,vol. 32, pp. 139- 146 ,(2005) , 10.1140/EPJD/E2004-00179-X