Precipitation sensitivity to autoconversion rate in a numerical weather-prediction model

作者: Céline Planche , John H. Marsham , Paul R. Field , Kenneth S. Carslaw , Adrian A. Hill

DOI: 10.1002/QJ.2497

关键词:

摘要: Aerosols are known to significantly affect cloud and precipitation patterns intensity, but these interactions ignored or very simplistically handled in climate numerical weather-prediction (NWP) models. A suite of one-way nested Met Office Unified Model (UM) runs, with a single-moment bulk microphysics scheme was used study two convective cases contrasting characteristics observed southern England. The autoconversion process that converts water rain is directly controlled by the assumed droplet number. impact changing number concentration (CDNC) on evolution can be inferred through changes rate. This done for range resolutions ranging from regional NWP (1 km) high resolution (up 100 m grid spacing) evaluate uncertainties due CDNC as function horizontal resolution. The first case characterised moderately intense showers forming below an upper-level potential vorticity anomaly, low freezing level. second case, one persistent stronger storm, warmer deeper boundary layer. colder almost insensitive even large CDNC, while change factor 3 affects total surface rate ∼17%. In both sensitivity similar at all spacings <1 km. sensitivities induced their ice-phase proportion. ice processes this model damp CDNC. For convection sensitive when accretion more significant than melting vice versa.

参考文章(60)
William R. Cotton, Zev Levin, Aerosol pollution impact on precipitation : a scientific review Springer Science and Business Media. B.V.. ,(2009)
Edwin Kessler, On the Distribution and Continuity of Water Substance in Atmospheric Circulations On the Distribution and Continuity of Water Substance in Atmospheric Circulations. ,vol. 32, pp. 1- 84 ,(1969) , 10.1007/978-1-935704-36-2_1
H.-F. Graf, The Complex Interaction of Aerosols and Clouds Science. ,vol. 303, pp. 1309- 1311 ,(2004) , 10.1126/SCIENCE.1094411
S. J. Abel, I. A. Boutle, An improved representation of the raindrop size distribution for single-moment microphysics schemes Quarterly Journal of the Royal Meteorological Society. ,vol. 138, pp. 2151- 2162 ,(2012) , 10.1002/QJ.1949
Seoung Soo Lee, Leo J. Donner, Vaughan T. J. Phillips, Yi Ming, The dependence of aerosol effects on clouds and precipitation on cloud‐system organization, shear and stability Journal of Geophysical Research. ,vol. 113, pp. 16202- 16202 ,(2008) , 10.1029/2007JD009224
J. A. Milbrandt, R. McTaggart-Cowan, Sedimentation-Induced Errors in Bulk Microphysics Schemes Journal of the Atmospheric Sciences. ,vol. 67, pp. 3931- 3948 ,(2010) , 10.1175/2010JAS3541.1
K.D. Beheng, A parameterization of warm cloud microphysical conversion processes Atmospheric Research. ,vol. 33, pp. 193- 206 ,(1994) , 10.1016/0169-8095(94)90020-5
Susan C. van den Heever, Gustavo G. Carrió, William R. Cotton, Paul J. DeMott, Anthony J. Prenni, Impacts of Nucleating Aerosol on Florida Storms. Part I: Mesoscale Simulations Journal of the Atmospheric Sciences. ,vol. 63, pp. 1752- 1775 ,(2006) , 10.1175/JAS3713.1
Bjorn Stevens, Graham Feingold, Untangling aerosol effects on clouds and precipitation in a buffered system Nature. ,vol. 461, pp. 607- 613 ,(2009) , 10.1038/NATURE08281
A. Seifert, C. Köhler, K. D. Beheng, Aerosol-cloud-precipitation effects over Germany as simulated by a convective-scale numerical weather prediction model Atmospheric Chemistry and Physics. ,vol. 12, pp. 709- 725 ,(2012) , 10.5194/ACP-12-709-2012