Gene expression feature selection for prostate cancer diagnosis using a two-phase heuristic-deterministic search strategy.

作者: Saleh Shahbeig , Akbar Rahideh , Mohammad Sadegh Helfroush , Kamran Kazemi

DOI: 10.1049/IET-SYB.2017.0044

关键词:

摘要: Here, a two-phase search strategy is proposed to identify the biomarkers in gene expression data set for prostate cancer diagnosis. A statistical filtering method initially employed remove noisiest data. In first phase of strategy, multi-objective optimisation based on binary particle swarm algorithm tuned by chaotic select optimal subset genes with minimum number and maximum classification accuracy. Finally, second cache-based modification sequential forward floating selection used find most discriminant from selected phase. The results applying available challenging demonstrate that can perfectly informative such accuracy, sensitivity, specificity 100% are achieved only nine biomarkers.

参考文章(34)
Sabine Zöchbauer-Müller, John D. Minna, Adi F. Gazdar, Shinichi Toyooka, Arvind K. Virmani, Eugene P. Frenkel, Alfredo J. Farinas, John McConnell, Kiyomi O. Toyooka, Riichiroh Maruyama, Aberrant Promoter Methylation Profile of Prostate Cancers and Its Relationship to Clinicopathological Features Clinical Cancer Research. ,vol. 8, pp. 514- 519 ,(2002)
AXIANG XU, SHENGKUN SUN, Genomic profiling screens small molecules of metastatic prostate carcinoma Oncology Letters. ,vol. 10, pp. 1402- 1408 ,(2015) , 10.3892/OL.2015.3472
S Sharad, A Srivastava, S Ravulapalli, P Parker, Y Chen, H Li, G Petrovics, A Dobi, Prostate cancer gene expression signature of patients with high body mass index. Prostate Cancer and Prostatic Diseases. ,vol. 14, pp. 22- 29 ,(2011) , 10.1038/PCAN.2010.44
B. Chandra, Manish Gupta, An efficient statistical feature selection approach for classification of gene expression data Journal of Biomedical Informatics. ,vol. 44, pp. 529- 535 ,(2011) , 10.1016/J.JBI.2011.01.001
Liping Wang, B.L. Han, Hybrid feature selection method for gene expression analysis Electronics Letters. ,vol. 50, pp. 1269- 1271 ,(2014) , 10.1049/EL.2013.3296
Q Wei, M Li, X Fu, R Tang, Y Na, M Jiang, Y Li, Global analysis of differentially expressed genes in androgen-independent prostate cancer. Prostate Cancer and Prostatic Diseases. ,vol. 10, pp. 167- 174 ,(2007) , 10.1038/SJ.PCAN.4500933
Chun-Chin Hsu, Mu-Chen Chen, Long-Sheng Chen, Integrating independent component analysis and support vector machine for multivariate process monitoring Computers & Industrial Engineering. ,vol. 59, pp. 145- 156 ,(2010) , 10.1016/J.CIE.2010.03.011
Thanh Nguyen, Abbas Khosravi, Douglas Creighton, Saeid Nahavandi, Hidden Markov models for cancer classification using gene expression profiles Information Sciences. ,vol. 316, pp. 293- 307 ,(2015) , 10.1016/J.INS.2015.04.012
P. Pudil, J. Novovičová, J. Kittler, Floating search methods in feature selection Pattern Recognition Letters. ,vol. 15, pp. 1119- 1125 ,(1994) , 10.1016/0167-8655(94)90127-9