Joint sentiment/topic model for sentiment analysis

作者: Chenghua Lin , Yulan He

DOI: 10.1145/1645953.1646003

关键词:

摘要: … d is classified as a positive-sentiment document if its probability of positive sentiment label given document P(lpos|d), is greater than its probability of negative sentiment label given …

参考文章(27)
David M Blei, Andrew Y Ng, Michael I Jordan, None, Latent dirichlet allocation Journal of Machine Learning Research. ,vol. 3, pp. 993- 1022 ,(2003) , 10.5555/944919.944937
T. L. Griffiths, M. Steyvers, Finding scientific topics Proceedings of the National Academy of Sciences of the United States of America. ,vol. 101, pp. 5228- 5235 ,(2004) , 10.1073/PNAS.0307752101
Ahmed Abbasi, Hsinchun Chen, Arab Salem, Sentiment analysis in multiple languages: Feature selection for opinion classification in Web forums ACM Transactions on Information Systems. ,vol. 26, pp. 12- ,(2008) , 10.1145/1361684.1361685
Alistair Kennedy, Diana Inkpen, SENTIMENT CLASSIFICATION of MOVIE REVIEWS USING CONTEXTUAL VALENCE SHIFTERS computational intelligence. ,vol. 22, pp. 110- 125 ,(2006) , 10.1111/J.1467-8640.2006.00277.X
Jun Zhao, Kang Liu, Gen Wang, Adding redundant features for CRFs-based sentence sentiment classification Proceedings of the Conference on Empirical Methods in Natural Language Processing - EMNLP '08. pp. 117- 126 ,(2008) , 10.3115/1613715.1613733
Casey Whitelaw, Navendu Garg, Shlomo Argamon, Using appraisal groups for sentiment analysis Proceedings of the 14th ACM international conference on Information and knowledge management - CIKM '05. pp. 625- 631 ,(2005) , 10.1145/1099554.1099714
Ivan Titov, Ryan McDonald, Modeling online reviews with multi-grain topic models Proceeding of the 17th international conference on World Wide Web - WWW '08. pp. 111- 120 ,(2008) , 10.1145/1367497.1367513
M.F. Porter, An algorithm for suffix stripping Program: Electronic Library and Information Systems. ,vol. 40, pp. 313- 316 ,(1997) , 10.1108/EB046814
Hanna M. Wallach, Topic modeling Proceedings of the 23rd international conference on Machine learning - ICML '06. pp. 977- 984 ,(2006) , 10.1145/1143844.1143967