Degeneracy schemes, quiver schemes, and Schubert varieties

作者: V. Lakshmibai , Peter Magyar

DOI: 10.1155/S1073792898000397

关键词:

摘要:

参考文章(14)
C. Musili, Conjeeveram S. Seshadri, Schubert Varieties and the Variety of Complexes Arithmetic and Geometry. pp. 329- 359 ,(1983) , 10.1007/978-1-4757-9286-7_13
Jens Carsten Jantzen, Representations of algebraic groups ,(1987)
A V Zelevinskii, Two remarks on graded nilpotent classes Russian Mathematical Surveys. ,vol. 40, pp. 249- 250 ,(1985) , 10.1070/RM1985V040N01ABEH003554
William Fulton, Universal Schubert polynomials Duke Mathematical Journal. ,vol. 96, pp. 575- 594 ,(1999) , 10.1215/S0012-7094-99-09618-7
S. Abeasis, Codimension 1 orbits and semi-invariants for the representations of an equioriented graph of type _{} Transactions of the American Mathematical Society. ,vol. 286, pp. 91- 123 ,(1984) , 10.1090/S0002-9947-1984-0756033-4
S. Abeasis, A. Del Fra, H. Kraft, The geometry of representations ofA m Mathematische Annalen. ,vol. 256, pp. 401- 418 ,(1981) , 10.1007/BF01679706
S Abeasis, A Del Fra, Degenerations for the representations of an equioriented quiver of type Dm Advances in Mathematics. ,vol. 52, pp. 81- 172 ,(1984) , 10.1016/0001-8708(84)90047-1
Corrado De Concini, Elisabetta Strickland, On the variety of complexes Advances in Mathematics. ,vol. 41, pp. 57- 77 ,(1981) , 10.1016/S0001-8708(81)80004-7
V. B. Mehta, A. Ramanathan, Frobenius splitting and cohomology vanishing for Schubert varieties Annals of Mathematics. ,vol. 122, pp. 27- 40 ,(1985) , 10.2307/1971368
A. Ramanathan, Schubert varieties are arithmetically Cohen-Macaulay Inventiones Mathematicae. ,vol. 80, pp. 283- 294 ,(1985) , 10.1007/BF01388607