The Potential for Machine Learning Analysis over Encrypted Data in Cloud-based Clinical Decision Support - Background and Review

作者: Anthony Maeder , B Javadi , J Basilakis

DOI:

关键词:

摘要: This paper appeared at the 8th Australasian Workshop on Health Informatics and Knowledge Management (HIKM 2015), Sydney, Australia, January 2015. Conferences in Research Practice Information Technology (CRPIT), Vol. 164, Anthony Maeder Jim Warren, Ed. Reproduction for academic, not-for profit purposes permitted provided this text is included

参考文章(75)
Dan Boneh, Craig Gentry, Shai Halevi, Frank Wang, David J. Wu, Private database queries using somewhat homomorphic encryption applied cryptography and network security. pp. 102- 118 ,(2013) , 10.1007/978-3-642-38980-1_7
Tancrède Lepoint, Michael Naehrig, A Comparison of the Homomorphic Encryption Schemes FV and YASHE international conference on cryptology in africa. ,vol. 8469, pp. 318- 335 ,(2014) , 10.1007/978-3-319-06734-6_20
Dan Boneh, Craig Gentry, A fully homomorphic encryption scheme Stanford University. ,(2009)
Thore Graepel, Kristin Lauter, Michael Naehrig, ML confidential: machine learning on encrypted data international conference on information security and cryptology. pp. 1- 21 ,(2012) , 10.1007/978-3-642-37682-5_1
Ronald L Rivest, Len Adleman, Michael L Dertouzos, ON DATA BANKS AND PRIVACY HOMOMORPHISMS ,(1978)
Jean-Sébastien Coron, Avradip Mandal, David Naccache, Mehdi Tibouchi, Fully homomorphic encryption over the integers with shorter public keys international cryptology conference. ,vol. 2011, pp. 487- 504 ,(2011) , 10.1007/978-3-642-22792-9_28
Pierre-Alain Fouque, Guillaume Poupard, Jacques Stern, Sharing Decryption in the Context of Voting or Lotteries financial cryptography. pp. 90- 104 ,(2000) , 10.1007/3-540-45472-1_7