Aspects of conservation in finite element flow computations

作者: Peter Hansbo

DOI: 10.1016/0045-7825(94)90127-9

关键词:

摘要: In this paper we consider different aspects of conservation in the finite element method. particular, address problem using numerical integration, related to mass lumping, simplified projections, quasilinear formulations, and non-conservative variables. Numerical results concerning projection algorithms are given.

参考文章(13)
R. L. Taylor, O. C. Zienkiewicz, Solid and fluid mechanics dynamics and non-linearity McGraw-Hill. ,(1991)
Peter Hansbo, Space-time oriented streamline diffusion methods for non-linear conservation laws in one dimension Communications in Numerical Methods in Engineering. ,vol. 10, pp. 203- 215 ,(1994) , 10.1002/CNM.1640100304
Peter Lax, Burton Wendroff, Systems of conservation laws Communications on Pure and Applied Mathematics. ,vol. 13, pp. 217- 237 ,(1960) , 10.1002/CPA.3160130205
Dominique Pelletier, Andre Fortin, Ricardo Camarero, Are fem solutions of incompressible flows really incompressible? (or how simple flows can cause headaches!) International Journal for Numerical Methods in Fluids. ,vol. 9, pp. 99- 112 ,(1989) , 10.1002/FLD.1650090108
Randall J. LeVeque, Numerical methods for conservation laws ,(1990)
C. M. Chen, V. Thomée, The lumped mass finite element method for a parabolic problem The Journal of The Australian Mathematical Society. Series B. Applied Mathematics. ,vol. 26, pp. 329- 354 ,(1985) , 10.1017/S0334270000004549
Isaac Fried, David S. Malkus, Finite element mass matrix lumping by numerical integration with no convergence rate loss International Journal of Solids and Structures. ,vol. 11, pp. 461- 466 ,(1975) , 10.1016/0020-7683(75)90081-5
Peter Hansbo, The characteristic streamline diffusion method for convection-diffusion problems Applied Mechanics and Engineering. ,vol. 96, pp. 239- 253 ,(1992) , 10.1016/0045-7825(92)90134-6