Homogenization with corrector term for periodic elliptic differential operators

作者: M. Sh. Birman , T. A. Suslina

DOI: 10.1090/S1061-0022-06-00935-6

关键词:

摘要:

参考文章(20)
T. A. Suslina, Homogenization of a stationary periodic Maxwell system St Petersburg Mathematical Journal. ,vol. 16, pp. 863- 922 ,(2005) , 10.1090/S1061-0022-05-00883-6
M. Sh. Birman, T. A. Suslina, Second order periodic differential operators. Threshold properties and homogenization St Petersburg Mathematical Journal. ,vol. 15, pp. 639- 714 ,(2004) , 10.1090/S1061-0022-04-00827-1
Alain Bensoussan, Alain Bensoussan, Jacques Louis Lions, George Papanicolaou, Asymptotic analysis for periodic structures ,(1978)
R. G. Shterenberg, An example of a periodic magnetic Schrödinger operator with degenerate lower edge of the spectrum St Petersburg Mathematical Journal. ,vol. 16, pp. 417- 422 ,(2005) , 10.1090/S1061-0022-05-00858-7
Georges Griso, Error estimate and unfolding for periodic homogenization Asymptotic Analysis. ,vol. 40, pp. 269- 286 ,(2004)
M. Sh. Birman, On homogenization procedure for periodic operators near the edge of an internal gap St Petersburg Mathematical Journal. ,vol. 15, pp. 507- 513 ,(2004) , 10.1090/S1061-0022-04-00819-2
T. A. Suslina, On the Homogenization of the Periodic Maxwell System Functional Analysis and Its Applications. ,vol. 38, pp. 234- 237 ,(2004) , 10.1023/B:FAIA.0000042808.32919.B7