Updating multivariate calibration with the Delaunay triangulation method: The creation of a new local model

作者: Ling Jin , QS Xu , J Smeyers-Verbeke , DL Massart , None

DOI: 10.1016/J.CHEMOLAB.2005.08.003

关键词:

摘要: Abstract The Delaunay triangulation (DT) method is a local simplex for multivariate calibration. DT model must be updated when new samples show different spectral characteristics, such as they contain components or the typical levels of analyte have moved outside their range. Two situations can considered updating, namely are close to original calibration set (marginal outliers) far away from (true outliers). This paper focuses on latter situation. Updating then leads creation mesh(es). OPTICS (Ordering Points Identify Clustering Structure) proposed decide if candidate updating form cluster and which exactly part that cluster. methodology was applied several NIR (Near Infrared Spectroscopy) data sets with structures procedure performs well. After results comparable better than PLS. However, cannot single very few samples. Overall, however, confirmed valuable tool

参考文章(14)
Hans-Peter Kriegel, Martin Ester, Jörg Sander, Xiaowei Xu, A density-based algorithm for discovering clusters in large spatial Databases with Noise knowledge discovery and data mining. pp. 226- 231 ,(1996)
Ronald D. Snee, Validation of Regression Models: Methods and Examples Technometrics. ,vol. 19, pp. 415- 428 ,(1977) , 10.1080/00401706.1977.10489581
Ling Jin, QS Xu, J Smeyers-Verbeke, DL Massart, None, Updating multivariate calibrations with the delaunay triangulation method. Applied Spectroscopy. ,vol. 59, pp. 1125- 1135 ,(2005) , 10.1366/0003702055012627
M. Daszykowski, B. Walczak, D. L. Massart, Looking for natural patterns in analytical data. 2. Tracing local density with OPTICS. Journal of Chemical Information and Computer Sciences. ,vol. 42, pp. 500- 507 ,(2002) , 10.1021/CI010384S
X. Capron, B. Walczak, O.E. de Noord, D.L. Massart, Selection and weighting of samples in multivariate regression model updating Chemometrics and Intelligent Laboratory Systems. ,vol. 76, pp. 205- 214 ,(2005) , 10.1016/J.CHEMOLAB.2004.11.003
Eric R. Ziegel, Handbook of Chemometrics and Qualimetrics, Part B Technometrics. ,vol. 42, pp. 218- 219 ,(2000) , 10.1080/00401706.2000.10486023
L. Jin, J.A. Fernández Pierna, Q. Xu, F. Wahl, O.E. de Noord, C.A. Saby, D.L. Massart, Delaunay triangulation method for multivariate calibration Analytica Chimica Acta. ,vol. 488, pp. 1- 14 ,(2003) , 10.1016/S0003-2670(03)00629-9
Rolf Danielsson, Gunnar Malmquist, Multi-dimensional simplex interpolation An approach to local models for prediction Chemometrics and Intelligent Laboratory Systems. ,vol. 14, pp. 115- 128 ,(1992) , 10.1016/0169-7439(92)80097-N
I Ruisánchez, F.X Rius, S Maspoch, J Coello, T Azzouz, R Tauler, L Sarabia, M.C Ortiz, J.A Fernández, D Massart, A Puigdomènech, C Garcı́a, Preliminary results of an interlaboratory study of chemometric software and methods on NIR data. Predicting the content of crude protein and water in forages Chemometrics and Intelligent Laboratory Systems. ,vol. 63, pp. 93- 105 ,(2002) , 10.1016/S0169-7439(02)00039-4
C. Bradford Barber, David P. Dobkin, Hannu Huhdanpaa, The quickhull algorithm for convex hulls ACM Transactions on Mathematical Software. ,vol. 22, pp. 469- 483 ,(1996) , 10.1145/235815.235821