Towards an Adaptive Information Retrieval System

作者: A. Goker , T. L. McCluskey

DOI: 10.1007/3-540-54563-8_98

关键词:

摘要: Standard Information Retrieval Systems (IRS) can be used to retrieve information in response specific requests, but they have no powers of adaption particular users over repeated sessions. This paper describes a learning system which uses relevance feedback from probabilistic IRS incrementally evolve context for user, number online We demonstrate the implementation with an example, and argue that it help adapt user's needs, by using this influence document display selection.

参考文章(8)
J. G. Carbonell, T. M. Mitchell, R. S. Michalski, Machine Learning: An Artificial Intelligence Approach Springer Publishing Company, Incorporated. ,(2013)
Carl Eckart, Gale Young, The approximation of one matrix by another of lower rank Psychometrika. ,vol. 1, pp. 211- 218 ,(1936) , 10.1007/BF02288367
S. E. Robertson, K. Sparck Jones, Relevance weighting of search terms Journal of the Association for Information Science and Technology. ,vol. 27, pp. 129- 146 ,(1976) , 10.1002/ASI.4630270302
S.E. ROBERTSON, The probability ranking principle in IR Journal of Documentation. ,vol. 33, pp. 281- 286 ,(1997) , 10.1108/EB026647
S.E. ROBERTSON, On term selection for query expansion Journal of Documentation. ,vol. 46, pp. 359- 364 ,(1991) , 10.1108/EB026866
W.B. CROFT, D.J. HARPER, USING PROBABILISTIC MODELS OF DOCUMENT RETRIEVAL WITHOUT RELEVANCE INFORMATION Journal of Documentation. ,vol. 35, pp. 285- 295 ,(1979) , 10.1108/EB026683
Scott Deerwester, Susan T. Dumais, George W. Furnas, Thomas K. Landauer, Richard Harshman, Indexing by Latent Semantic Analysis Journal of the Association for Information Science and Technology. ,vol. 41, pp. 391- 407 ,(1990) , 10.1002/(SICI)1097-4571(199009)41:6<391::AID-ASI1>3.0.CO;2-9