Maximal inequalities and space-time regularity of stochastic convolutions

作者: Szymon Peszat , Jan Seidler

DOI: 10.21136/MB.1998.126299

关键词:

摘要: Space-time regularity of stochastic convolution integrals J = {\int^\cdot_0 S(\cdot-r)Z(r)W(r)} driven by a cylindrical Wiener process $W$ in an $L^2$-space on bounded domain is investigated. The semigroup $S$ supposed to be given the Green function $2m$-th order parabolic boundary value problem, and $Z$ multiplication operator. Under fairly general assumptions, $J$ proved Holder continuous time space. method yields maximal inequalities for convolutions space functions as well.

参考文章(11)
Tadahisa Funaki, Regularity properties for stochastic partial differential equations of parabolic type Osaka Journal of Mathematics. ,vol. 28, pp. 495- 516 ,(1991) , 10.18910/11444
Tadahisa Funaki, Random motion of strings and related stochastic evolution equations Nagoya Mathematical Journal. ,vol. 89, pp. 129- 193 ,(1983) , 10.1017/S0027763000020298
René Carmona, Harry Kesten, John B Walsh, John B Walsh, An introduction to stochastic partial differential equations Lecture Notes in Mathematics. pp. 265- 439 ,(1986) , 10.1007/BFB0074920
D.A. Dawson, Stochastic evolution equations Bellman Prize in Mathematical Biosciences. ,vol. 15, pp. 287- 316 ,(1972) , 10.1016/0025-5564(72)90039-9
Peszat Szymon, Existence and uniqueness of the solution for stochastic equations on banach spaces Stochastics and Stochastics Reports. ,vol. 55, pp. 167- 193 ,(1995) , 10.1080/17442509508834024
Peter Kotelenez, A maximal inequality for stochastic convolution integrals on hilbert spaces and space-time regularity of linear stochastic partial differential equations Stochastics An International Journal of Probability and Stochastic Processes. ,vol. 21, pp. 345- 358 ,(1987) , 10.1080/17442508708833463
Jan Seidler, Da Prato-Zabczyk's maximal inequality revisited. I. Mathematica Bohemica. ,vol. 118, pp. 67- 106 ,(1993) , 10.21136/MB.1993.126013
Hiroki Tanabe, Equations of evolution ,(1979)