Some properties of clasical multi-dimesional scaling

作者: K.V. Mardia

DOI: 10.1080/03610927808827707

关键词:

摘要: The paper gives a new optimal property of the classical method multi-dimensional scaling when distance matrix is non-Euclidean. We also examine robustness under linear model. A technique to estimate missing values given.

参考文章(10)
Warren S. Torgerson, Multidimensional scaling: I. Theory and method Psychometrika. ,vol. 17, pp. 401- 419 ,(1952) , 10.1007/BF02288916
Carl Eckart, Gale Young, The approximation of one matrix by another of lower rank Psychometrika. ,vol. 1, pp. 211- 218 ,(1936) , 10.1007/BF02288367
James C. Lingoes, Some boundary conditions for a monotone analysis of symmetric matrices Psychometrika. ,vol. 36, pp. 195- 203 ,(1971) , 10.1007/BF02291398
Warren Stanley TORGERSON, Theory and Methods of Scaling ,(1958)
Gale Young, A. S. Householder, Discussion of a set of points in terms of their mutual distances Psychometrika. ,vol. 3, pp. 19- 22 ,(1938) , 10.1007/BF02287916
Peter H. Schönemann, Robert M. Carroll, FITTING ONE MATRIX TO ANOTHER UNDER CHOICE OF A CENTRAL DILATION AND A RIGID MOTION Psychometrika. ,vol. 1969, pp. 245- 255 ,(1970) , 10.1007/BF02291266
Gosta Ekman, Dimensions of Color Vision The Journal of Psychology. ,vol. 38, pp. 467- 474 ,(1954) , 10.1080/00223980.1954.9712953