k-Sets of Convex Inclusion Chains of Planar Point Sets

作者: Wael El Oraiby , Dominique Schmitt

DOI: 10.1007/11821069_30

关键词:

摘要: Given a set V of n points in the plane, we introduce new number k-sets that is an invariant V: convex inclusion chain V. A ordering (v1, v2, ..., vn) such no point belongs to hull its predecessors. The are then distinct all subsets {v1, vi}, for i {k+1, n}. We show these depends only on and not chosen chain. Moreover, this surprisingly equal regions order-k Voronoi diagram As application, give efficient on-line algorithm compute vertices simple polygonal line, vertex which belonging predecessors line.

参考文章(14)
Mark H. Overmars, Design of Dynamic Data Structures ,(1987)
Artur Andrzejak, Komei Fukuda, Optimization over k-set Polytopes and Efficient k-set Enumeration workshop on algorithms and data structures. pp. 1- 12 ,(1999) , 10.1007/3-540-48447-7_1
Mark H. Overmars, The design of dynamic data structures ,(1983)
Lee, Silio, An Optimal Illumination Region Algorithm for Convex Polygons IEEE Transactions on Computers. ,vol. 31, pp. 1225- 1227 ,(1982) , 10.1109/TC.1982.1675946
G.W. Peck, On ‘k-sets’ in the plane Discrete Mathematics. ,vol. 56, pp. 73- 74 ,(1985) , 10.1016/0012-365X(85)90193-1
Richard Cole, Micha Sharir, Chee K. Yap, On k -hulls and related problems SIAM Journal on Computing. ,vol. 16, pp. 61- 77 ,(1987) , 10.1137/0216005
Avraham A. Melkman, On-line construction of the convex hull of a simple polyline Information Processing Letters. ,vol. 25, pp. 11- 12 ,(1987) , 10.1016/0020-0190(87)90086-X
G. Tóth, Point Sets with Many k-Sets Discrete and Computational Geometry. ,vol. 26, pp. 187- 194 ,(2001) , 10.1007/S004540010022
Timothy M. Chan, Dynamic planar convex hull operations in near-logarithmic amortized time Journal of the ACM. ,vol. 48, pp. 1- 12 ,(2001) , 10.1145/363647.363652
H. Edelsbrunner, P. Valtr, E. Welzl, Cutting dense point sets in half Discrete and Computational Geometry. ,vol. 17, pp. 243- 255 ,(1997) , 10.1007/PL00009291