Adaptive robust estimation in sparse vector model

作者: Laëtitia Comminges , Olivier Collier , Alexandre B. Tsybakov , Mohamed Ndaoud

DOI:

关键词:

摘要: For the sparse vector model, we consider estimation of target vector, its L2-norm and noise variance. We construct adaptive estimators establish optimal rates when adaptation is considered with respect to triplet "noise level - distribution sparsity". classes distributions polynomially exponentially decreasing tails as well case Gaussian noise. The obtained turn out be different from minimax non-adaptive known. A crucial issue ignorance Moreover, knowing or not can also influence rate. example, variance differ depending on whether sub-Gaussian without a precise knowledge distribution. Estimation in our setting viewed an variant robust scale contamination where instead fixing "nominal" advance, assume that it belongs some class distributions.

参考文章(18)
David L. Donoho, Iain M. Johnstone, Jeffrey C. Hoch, Alan S. Stern, Maximum Entropy and the Nearly Black Object Journal of the royal statistical society series b-methodological. ,vol. 54, pp. 41- 67 ,(1992) , 10.1111/J.2517-6161.1992.TB01864.X
V. A. Statulevičius, I︠u︡. V. Prokhorov, Limit Theorems of Probability Theory ,(2000)
Alexandre B. Tsybakov, Introduction to Nonparametric Estimation ,(2008)
Jon A. Wellner, Galen R. Shorack, Empirical processes with applications to statistics ,(1986)
Eric Gautier, Alexandre B. Tsybakov, Pivotal estimation in high-dimensional regression via linear programming Empirical Inference. pp. 195- 204 ,(2013) , 10.1007/978-3-642-41136-6_17
Lie Wang, Victor Chernozhukov, Alexandre Belloni, Pivotal estimation via square-root Lasso in nonparametric regression Annals of Statistics. ,vol. 42, pp. 757- 788 ,(2014) , 10.1920/WP.CEM.2013.6213
T. Sun, C.-H. Zhang, Scaled sparse linear regression Biometrika. ,vol. 99, pp. 879- 898 ,(2012) , 10.1093/BIOMET/ASS043
Lucas Janson, Rina Foygel Barber, Emmanuel Candès, EigenPrism: inference for high dimensional signal-to-noise ratios. Journal of The Royal Statistical Society Series B-statistical Methodology. ,vol. 79, pp. 1037- 1065 ,(2017) , 10.1111/RSSB.12203
Larry Wasserman, All Of Statistics : Springer,. ,(2004) , 10.1007/978-0-387-21736-9